

MyCaffeine: Caffeine Tracker for iOS

Ryan Bush

UP904935

School of Computing
Final-year Project

Engineering

 2

Abstract
Caffeine has a long history of human consumption and comes with both positive and negative
health benefits. This project aims to produce an application to help users track and monitor
their caffeine intake to understand their consumption better.

This project documents the processes used in developing the MyCaffeine application for iOS
devices. Agile software development cycles are used to effectively design, implement, and
test the application. All stages of the implementation are recorded, and the final application
is analysed against initial plans. Research into caffeine consumption and application
development is conducted to enhance understanding further.

 3

Table of Contents
Abstract ... 2

TABLE OF FIGURES ... 5
TABLE OF TABLES ... 7
1. INTRODUCTION .. 8

1.1 PROJECT OVERVIEW .. 8
1.2 PROJECT AIMS & OBJECTIVES .. 8
1.3 PROJECT CONSTRAINTS .. 8
1.4 SOCIAL, LEGAL AND ETHICAL ISSUES .. 9
1.5 SUMMARY ... 9

2. LITERATURE REVIEW .. 10
2.1 INTRODUCTION ... 10

2.1.1 Methods ... 10
2.2 APPLICATION DEVELOPMENT ... 10

2.2.1 Platform ... 10
2.2.2 Native vs Cross-Platform .. 11

2.3 CAFFEINE .. 11
2.3.1 Caffeine Consumption .. 12

2.4 CURRENTLY AVAILABLE MOBILE APPS ... 12
2.4.1 WaterMinder .. 12
2.4.2 HiCoffee .. 13
2.4.3 Barista .. 14
2.4.4 Application Comparison ... 15

2.5 SUMMARY ... 15
3. METHODOLOGY & PROJECT MANAGEMENT .. 16

3.1 INTRODUCTION ... 16
3.2 METHODOLOGY .. 16

3.2.1 Waterfall .. 16
3.2.2 Incremental .. 17
3.2.3 Agile ... 17

3.3 CHOSEN METHODOLOGY .. 18
3.4 PROJECT MANAGEMENT .. 18
3.5 CONCLUSION .. 18

4. REQUIREMENTS ... 19
4.1 INTRODUCTION ... 19
4.2 REQUIREMENTS FROM RESEARCH ... 19
4.3 REQUIREMENTS FROM QUESTIONNAIRE .. 19

4.3.1 Analysis of Questionnaire ... 20
4.3.2 Summary .. 22

4.4 REQUIREMENTS .. 22
4.5 SUMMARY ... 23

5. DESIGN .. 24
5.1 PROJECT INITIATION .. 24

5.1.1 Version Control ... 24
5.1.2 Database .. 24
5.1.3 Security & Privacy Considerations .. 24

5.2 TESTING .. 25
5.2.1 Design Feedback .. 25
5.2.2 Application Testing ... 25

 4

5.3 SEQUENCE DIAGRAMS ... 26
5.4 USER INTERFACE DESIGNS .. 27

5.4.1 House Styles ... 27
5.4.2 UI Wireframes .. 28
5.4.4 High-Fidelity Designs .. 31
5.4.5 Testing on High-Fidelity Designs .. 36

5.5 SUMMARY ... 36
6. IMPLEMENTATION ... 37

6.1 PROGRAMMING LANGUAGE .. 37
6.2 PROGRAMMING RESOURCES ... 37
6.3 INTEGRATED DEVELOPMENT ENVIRONMENT CHOICE .. 38
6.4 VERSION CONTROL .. 38
6.5 COMMON COMPONENTS ... 38

6.5.1 Global Styling ... 38
6.5.2 Application-wide Icons ... 39
6.5.3 Helper Functions .. 39

6.6 CORE DATA ... 40
6.7 USER INTERFACE ... 40

6.7.1 Launch Screen .. 41
6.7.2 Navigation .. 42
6.7.3 Home View ... 43
6.7.4 Add Drink View ... 45
6.7.5 Trends View .. 48
6.7.6 History View ... 49
6.7.7 User Notifications ... 50
6.7.8 Apple Health Integration .. 51

6.8 EXTERNAL LIBRARIES .. 52
6.8.1 SF Symbols .. 52
6.8.2 Flaticons ... 52
6.8.3 SwiftUICharts ... 52
6.8.4 HalfASheet ... 52
6.8.5 TextFieldStepper ... 53

6.9 SUMMARY ... 53
7. TESTING ... 54

7.1 PRIMARY TESTING METHODS .. 54
7.2 FUNCTIONALITY TESTING .. 54
7.3 RESPONSIVENESS TESTING .. 56
7.4 SUMMARY ... 56

8. EVALUATION .. 57
8.1 EVALUATION AGAINST REQUIREMENTS .. 57

8.1.1 Failed Requirements ... 57
8.2 METHODOLOGY EVALUATION .. 58
8.3 TIME MANAGEMENT EVALUATION ... 58
8.4 FUTURE WORK ... 58
8.5 PERSONAL CONCLUSION ... 59

REFERENCES ... 60
APPENDIX A: PID .. 64
APPENDIX B: ETHICS REVIEW ... 71
APPENDIX C: GANTT CHART ... 73
APPENDIX D: QUESTIONNAIRE ... 74
APPENDIX E: QUESTIONNAIRE RESULTS ... 79

 5

Table of Figures
Figure 1: Search results for mobile development .. 10
Figure 2: WaterMinder Screenshot .. 13
Figure 3: HiCoffee Screenshot .. 14
Figure 4: Barista Screenshot ... 15
Figure 5: Waterfall methodology ... 16
Figure 6: Question Results: Do you consume caffeinated drinks? ... 20
Figure 7: Questionnaire Results: What type of caffeinated beverages do you usually consume?
 .. 20
Figure 8: Questionnaire Results: Roughly how many caffeinated drinks do you consume a day?
 .. 21
Figure 9: Questionnaire Results: Are you aware of how much caffeine is in the drinks you
consume? ... 21
Figure 10: Questionnaire Results: Do you currently track your caffeine usage? 21
Figure 11: Questionnaire Results: Would you find a system that makes it easy to track your
caffeine usage useful? .. 21
Figure 12: Sequence Diagram: User adding a drink to the system ... 26
Figure 13: Application colour scheme .. 27
Figure 14: Insights Graphs Colour Scheme ... 27
Figure 15: Designs for Application Icon .. 27
Figure 16: Designs for Application Logo ... 28
Figure 17: Initial hand UI Wireframes .. 28
Figure 18: Annotated UI Wireframe for Home Screen ... 29
Figure 19: Annotated UI Wireframe for Trends Screen .. 30
Figure 20: Activity section in Apple's Fitness app ... 31
Figure 21: Caffeine Intake Highlight high-fidelity designs .. 31
Figure 22: Home Screen High Fidelity Design ... 32
Figure 23: High Fidelity designs for Trends screens ... 33
Figure 24: High Fidelity design for History screen .. 34
Figure 25: High Fidelity design for Adding Drinks ... 35
Figure 26: Changes made to the trends charts ... 36
Figure 27: Changes made to the list of drinks in the History screen 36
Figure 28: The three courses completed on Codecademy ... 37
Figure 29: The two courses completed on LinkedIn Learning .. 37
Figure 30: The Asset Catalogue showing colours, including the difference in light and dark
modes ... 38
Figure 31: An example of how images are stored in the assets catalogue, including multiple
sizes .. 39
Figure 32: Helper function to calculate caffeine metabolism .. 39
Figure 33: Helper function to retrieve the current caffeine percentage 40
Figure 34: Helper function to retrieve the user's bedtime caffeine level 40
Figure 35: Major UI views of the application ... 41
Figure 36: The implemented launch screen ... 41
Figure 37: Implementation of the TabView within MainView ... 42
Figure 38: TabView Implemented as shown in light and dark mode 42

 6

Figure 39: Implementation of the percentage circle on the highlights panel 43
Figure 40: The result of the implementation of the highlights panel is light and dark modes
 .. 43
Figure 41: Implementation of Today's Drinks in the HomeView .. 44
Figure 42: Result of the implementation of Today's Drinks ... 44
Figure 43: Implementation of the 'Add Drink' button .. 45
Figure 44: Implementation of manual entry of caffeine .. 46
Figure 45: Implementation of the list showing users created drinks 47
Figure 46: Result of the implementation of the list view with the HalfSheet and TextStepper
 .. 47
Figure 47: Implementation to build a chart for caffeine consumption over the past week .. 48
Figure 48: Implementation of the list shown on the History View ... 49
Figure 49: Implementation required to delete the item from the list 49
Figure 50: Implementation of Notifications ... 50
Figure 51: Implementation of HealthKit functions ... 51
Figure 52: Implementation of HealthKit function to save caffeine data 52
Figure 53: A few of the icons used from Flaticons ... 52
Figure 54: Application running on three different simulated devices 56

 7

Table of Tables
Table 1: Methods of tracking for currently available applications ... 12
Table 2: Non-Functional Requirements .. 22
Table 3: Functional Requirements .. 23
Table 4: Results of Functionality Testing .. 55
Table 5: Evaluation against Requirements ... 57

 8

1. Introduction
Caffeine, found in various plant constituents such as coffee and cocoa beans and tea leaves,
has a long history of human consumption (European Food Safety Authority, 2017). Most
popularly consumed in coffee and tea, caffeine has numerous health outcomes, both positive
and negative.

MyCaffeine will be a mobile application that aims to help users track and analyse their
caffeine consumption by primarily focusing on consumption through drinks.

1.1 Project Overview
The issue that this application aims to resolve is the high caffeine consumption in young
adults. The application will allow users to enter drinks they have consumed and analyse their
caffeine intake. The application will initially be available on iOS devices, supporting mobile
systems.

1.2 Project Aims & Objectives
This project will critically analyse and research similar mobile applications available to design
and develop a caffeine tracking application. The application will enable users to add, track
and monitor their caffeine intake. This application is being made to help users find out more
about how much caffeine they consume and its effect on their bodies. Furthermore, it is often
unclear how much caffeine is in foods and drinks, with companies not required to display
caffeine content on their products. This application will show how much caffeine is in branded
products and allow users to create their consumption habits.

Specific objectives will need to be established to achieve the aims detailed above. Firstly, a
literature review will be conducted researching the finer details of caffeine and its usage in
the modern day. The review will also describe various methods of implementing applications
on an iOS platform, looking at native versus cross-platform methods. The system
requirements will be crafted from the literature review and a short questionnaire. Various
project methodologies will be analysed and one selected for this project, then designs will be
produced for the applications GUI and database structures. The implementation of the
artefact will be documented, ensuring it meets the requirements set out and tested to high
standards. A conclusion will be drawn, and any future work will be discussed.

During this project, there are also several personal development objectives to improve
knowledge of mobile application development.

1.3 Project Constraints
Several constraints will have to be considered when designing and developing the application
that may drastically affect the end artefact. Depending on their nature, these constraints can
somewhat be prevented or lessened.

The constraint that has the most damaging effect will be time. Roughly eight months are
allocated to complete this project, and with such a short timeframe, there is a great risk of
delay. Without a fixed deadline, there is no doubt that the final system would be substantially

 9

more influential. However, with a deadline, designs and requirements must be more practical
to complete the development in time. A GANTT chart (Appendix C) will be created to enforce
better time management with chosen deadlines for each section.

A further constraint is the level of coding experience. A particularly low level of expertise
when developing Swift applications will likely increase the time it takes to implement more
complex aspects of the system. Knowledge of different programming languages is likely to
help, as certain programming features are anticipated to carry over to the Swift language. A
lot of time will be reserved for the implementation stage to combat this constraint.

Another constraint, which is likely to become less likely as the project evolves, is the COVID-
19 pandemic. The risk of lockdowns or reduced social contact can change how certain aspects
of the project are approached. One change because of this is how requirements are gathered.
There will be an emphasis on requirements collected from reviewing existing systems and a
questionnaire rather than holding face-to-face focus groups.

1.4 Social, Legal and Ethical Issues
This project will need to follow several relevant laws, notably the General Data Protection
Regulation (GDPR). To help with data protection laws, personal data stored will be minimal.

All ethical policies within the university will be followed, and an ethics review will be
conducted.

1.5 Summary
This chapter gives a brief overview of the project, including aims and objectives and why the
project is needed. The next chapter will further analyse caffeine and existing systems within
a literature review.

 10

2. Literature Review
2.1 Introduction
While a basic understanding is currently known, this chapter will outline methods to build this
knowledge. The following literature review will examine different elements of mobile
development through books, journals, and other publications. It will also investigate caffeine
consumption within the general population to better understand habits and draft
requirements.

2.1.1 Methods
Various research tools were used in the creation of this literature review. To help find relevant
documents, keywords were entered into Google Scholar and the university’s online library
tool. An example of how a search term was narrowed down is shown in Figure 1.

Figure 1: Search results for mobile development

2.2 Application Development
This section of the literature review will investigate various key application development
concepts. This will ensure that the final product is completed to a high standard and follows
leading industry standards.

2.2.1 Platform
The success of a software product for mobile devices will be conditioned by the popularity it
receives (Delia et al., 2017). Smartphone usage has increased by 238% from 2010 to 2020
(Statista, 2021), now estimated 61.41 million users. With smartphones becoming increasingly
popular, it is critical to ensure that applications are deployed to the right platform to maximise
their potential target audience. The leading platforms for mobile development are Android
and iOS, with just a 0.53% difference in market share within the United Kingdom (StatCounter,
2021a). Although maintaining an even market share in the UK, Android is seen as fast-growing
and taking over from now obsolete systems, such as Blackberry OS and Symbian OS, and
enjoys a worldwide market share of near 73% (StatCounter, 2021b).

 11

Android has a bigger problem when it comes to project timelines. Developing Android
applications generally take more time due to device fragmentation (Lamhaddab et al., 2019).
Fragmentation occurs when there are many devices supporting Android, and it becomes
challenging to create an application that works on them all. Therefore, the clear advantage
worldwide market share is significantly reduced due to the developed application only
reaching a fraction of that share. In contrast to Android, iOS does not suffer from the same
issues as fragmentation (Grønli et al., 2014). This mostly comes down to Apple being the only
creator of iOS devices, whereas Android has many manufacturers.

Whereas an application that solely targets iOS would reduce the potential target audience,
the faster development time due to less device fragmentation would be ideal for combating
the rapid development phase in most projects. The release of SwiftUI (Apple, n.d.-m) in 2019
provided a declarative framework for UI structure across all Apple platforms, compared to
the traditional library approach beforehand. This has allowed for more rapid UI development,
which is currently unmatched in the Android equivalent, Google Firebase.

2.2.2 Native vs Cross-Platform
Nowadays, most mobile applications are developed in three ways; native, web, and hybrid.
Native applications have been the traditional way of developing applications and involve the
use of languages and tools specifically designed for each platform. This allows the application
to fully use the device's capabilities and often allows for better performance and minimal lag
with CPU render time. A considerable consequence of this approach is that if an app should
reach a multi-platform audience, the entirety of the app must be written twice, once for
Android and once for iOS (Biørn-Hansen et al., 2020). It is pretty rare for modern applications
to be built for a single platform, but native development is usually the best way to go if this is
the case.

Due to the often-higher costs and knowledge levels related to developing native applications,
numerous alternatives are often known as cross-platform mobile development. Typically, a
single codebase can be used to develop applications across several platforms, often with little
to no platform-specific modifications (Biørn-Hansen et al., 2020). These tools use popular
programming languages, which allows for a smaller learning curve. React Native is often seen
as the leader in cross-platform technology, having been released by Facebook in 2015. The
apps are built using JavaScript but are indistinguishable from natively developed apps in
Android or iOS (Shah et al., 2019). React Native is currently used in thousands of mobile
applications, including large companies such as Uber, Shopify, and Facebook (React Native ·
Learn Once, Write Anywhere, n.d.).

2.3 Caffeine
Caffeine is one of the most widely used psychoactive substances in the world (Daly et al.,
1998). Caffeine can be consumed in various ways, with the most common coming from
beverages such as tea, coffee, and carbonated soft drinks. Higher doses of caffeine induce
adverse effects such as anxiety, restlessness, insomnia, and tachycardia (Nehlig, 1999). While
three of these effects can be relatively mild, tachycardia can be potentially life-threatening.

 12

2.3.1 Caffeine Consumption
In the United Kingdom, approximately 95% of the population reports consuming caffeinated
beverages at least once per week (Stine et al., n.d.), most commonly tea and coffee. In
addition to caffeine in hot drinks, caffeine is artificially added to most carbonated soft drinks,
such as Red Bull and Coca Cola. While high amounts of soft drinks rarely cause problems to
most adults, teenagers aged 11 – 18 have consumed nearly 450 grams of soft drinks a day
(Public Health England, 2014).

For adults, moderate caffeine intakes of approximately 300mg per day are well tolerated (Fitt
et al., 2013). Although there is no dietary recommended amount in the UK, the consensus is
that adults observe this level of consumption, with younger ages advised to consider a lower
amount. In 2015, The European Food Safety Authority published a report stating that the
consumption for adults should not exceed 400mg per day (EFSA Panel on Dietetic Products,
2015).

2.4 Currently Available Mobile Apps
This next section details research into mobile applications currently available on the iOS App
Store relating to tracking caffeine consumption. Doing this research was critical to ensure user
requirements could be drafted. The applications are detailed below (Table 1).

App Name Method of Tracking Price
WaterMinder Manual £4.49 one off
HiCoffee Fixed drinks & manual Free, Premium £5.99 or £0.99

per month
Barista Fixed drinks & manual Free, Premium £0.89 one off

Table 1: Methods of tracking for currently available applications

2.4.1 WaterMinder
WaterMinder (WaterMinder, n.d.) is a mobile application available on iOS, macOS and
Android that primarily track a user’s water intake; however, it recently added the ability to
track caffeine. Tracking caffeine simply involves manually adding a quantity of caffeine
directly into the application. Caffeine tracking isn’t enabled by default, so it needs to be
enabled from the settings. Other than viewing your intake history, there is no further mention
of caffeine in the application.

The application supports Apple Health synchronisation but doesn’t pull data from Apple
Health into the application, so any caffeine added elsewhere isn’t counted. There are also
Apple Watch complications; however, none mentions caffeine.

Key Features:

• A basic way of entering caffeine consumption
• View history of caffeine consumption
• Synchronisation to Apple Health
• Light/Dark modes

 13

Figure 2: WaterMinder Screenshot

WaterMinder is a paid application available for a price of £4.49. A macOS version is available
for £2.49, and an Android version is free to install but has in-app purchases.

Overall, WaterMinder offers poor support for tracking caffeine intake. This was expected as
the application is primarily used for monitoring water consumption.

2.4.2 HiCoffee
HiCoffee (HiCoffee, n.d.) is a caffeine tracking application built for iOS devices. The user is
presented with a clean user interface to see their current caffeine level, total drinks today,
total daily caffeine level, and caffeine metabolism over the next 12 hours. The log screen
shows a calendar view, which views the number of drinks consumed that day by changing the
calendar colour. A simple list shows all the drinks and allows them to be edited, while the
insights screen gives you different reports weekly and monthly. HiCoffee is a more complete
application than WaterMinder but considering that the latter is designed mainly for tracking
water intake, this is expected. User data can be synchronised to the user's iCloud account,
allowing data to be backed up and viewed on several devices.

Key Features:

• Clear, user-friendly interface
• Add caffeine usage through drinks
• View history of caffeine usage through list and calendar
• View various insights into caffeine usage, including comparing week-on-week and

month-on-month
• Custom metabolism preferences
• Apple Health synchronisation
• Light/Dark mode
• Notification reminders at custom times during the day

 14

Figure 3: HiCoffee Screenshot

HiCoffee is a free application available to download on iOS and iPadOS devices only. A
premium subscription is available, priced at either £0.99 per month or £5.99 for a lifetime
subscription. The premium service allows users to access beverage data for popular branded
drinks and allows the user to add custom drinks.

Overall, HiCoffee is a complete application for tracking caffeine consumption. It offers a clean
user interface and displays just the right amount of data to read briefly. The ability to add
drinks of popular brands allows users to ensure they add the correct caffeine levels.

2.4.3 Barista
Barista(Barista, n.d.) is an application for iOS devices that allows caffeine consumption to be
tracked. It features a large user interface with quick add buttons to quickly add popular drinks.
A graph shows your caffeine metabolism; however, it only starts when you add your first
drink, not carrying over from the day before. The trend page features a calendar, which
changes from blue to red on days caffeine has been consumed. On clicking on the date, you
are shown the caffeine metabolism for that day, but this again starts from the day's first drink.
The application also allows you to track specific symptoms that the user may experience.

Key Features:

• Large user interface design
• Add caffeine from quick drinks or branded drinks
• Track symptoms
• Notification reminder at one point during the day

 15

Figure 4: Barista Screenshot

Barista is available on the App Store for free, with a premium version available for £0.89. The
premium version adds advanced monitoring and synchronisation of data to iCloud.

Overall, Barista offers an enhanced way of tracking caffeine compared to WaterMinder but
falls short of HiCoffee. The large user interface can be user-friendly but feels too big on larger
phones. How caffeine monitoring is hidden behind a paywall would likely discourage users
from this application.

2.4.4 Application Comparison
The three applications that were compared had contrasting ways of tracking caffeine
consumption. WaterMinder, by far, offers the most unfavourable way of tracking, although
this was somewhat expected as the primary goal of the application is different to the others.
Out of the three, HiCoffee was the best application considering both design and functionality;
however, it lacked a simplistic way of adding caffeine by number. Showing insights into data
was also superior to other systems and allowed the user to get a full grasp of their usage.
Barista balanced adding caffeine consumption, offering both a manual method and branded
drink options, but the user interface wasn’t as clean as the others.

2.5 Summary
After analysing the literature above, many key features were found. For the overall design,
the application should be clean and user-friendly. There should not be much information on
the screen that the user must search through to find what they need. Allowing a user to track
caffeine in both a manual method and automatically is a must for this system. Looking at the
existing applications from an outside point of view allowed flaws to be found, which will be
attempted to avoid when implementing MyCaffeine. The literature analysis and current
applications will be used to craft some system requirements in chapter 4.

 16

3. Methodology & Project Management
3.1 Introduction
This chapter will investigate varying software development methodologies, discussing the
advantages and disadvantages of using each within a project. Three methodologies will be
reviewed, and one will be chosen for usage in this project.

3.2 Methodology
Each project must go through a development cycle, often called a software development life
cycle. It provides the basic framework for managing the project. Choosing the wrong
methodology can have adverse effects. Studies have investigated reasonings for failed
projects and found most projects fail due to (Lindstrom & Jeffries, 2004):

• Requirements that are not clearly communicated
• Requirements that do not follow the business problem
• Requirements that change prior to the completion of the project
• Software that has not been tested
• Software that has not been tested as the user will use it
• Software developed such that it is difficult to modify
• Software that is used for function for which it was not intended
• Projects not staffed with the resources required in the project plan
• Schedule and scope commitments are made prior to fully understanding the

requirements or the technical risks

3.2.1 Waterfall
One of the first models to be introduced was the waterfall methodology which works
sequentially by requiring each task to be fully complete before the next starts, as shown in
Figure 5. It is designed to be simple and easy to put into use. Waterfall typically requires a
long time of requirements gathering and project planning before any code is written
(Shaydulin & Sybrandt, 2017).

Figure 5: Waterfall methodology

 17

The waterfall methodology has its advantages over others, such as maintaining a consistent
approach over the different engineering models and allowing each stage to be monitored for
progress. Due to the requirement for each step to be completed before the next can start, it
can be handy as the design, development and testing phases rely on the preceding stage being
completed before they can begin.

The waterfall methodology will not be used to produce this application, as it can reduce the
focus on the implementation stage by requiring longer to gather requirements. This could
lead to requirements not being added to the project.

3.2.2 Incremental
The incremental, also known as iterative, is a repetitive methodology that emphasises smaller
steps toward the overall goal. Compared to the waterfall model, a working system is available
earlier in the project, which is then improved and expanded over time. This model allows the
project owner’s feedback to be retrieved after each iteration has been completed, allowing
the addition of requirements until the project owner is happy with the final product.

One of the significant advantages of this model is that a working version of the application is
available early on, allowing for fine-tuning. This methodology is effective when working on
larger projects, where multiple members can work on separate increments. Furthermore, if
there is a change to requirements late into the development stage, this model is better
adapted.

It can be hard to break tasks down into smaller chunks when working on a smaller project, so
this model isn’t well-adapted for smaller applications. There is also no clear endpoint to the
incremental model, as more iterations can be added at any stage. For this reason, it will not
be used for this project.

3.2.3 Agile
Agile development is a wide range of methodologies, primarily focusing on flexibility. It is a
conceptual framework for software engineering that begins with a starting planning phase
and follows the road toward the deployment phase with iterative and incremental
interactions throughout the life cycle of the project (Alsaqqa et al., 2020). The iterative
approach taken by agile methodologies means processes are improved upon each time an
interval is repeated.

Extreme Programming (XP) is a form of agile development, primarily focusing on software
development with a team of programmers. It focuses on regular minor releases concentrate
on new features. Requirements are divided into several iterations, and each iteration ends
with customer acceptance testing (Hamed & Abushama, 2013).

Since XP focuses on situations involving small teams, most extreme programming practices
require teamwork. When a single person is working on their own, the personal extreme
programming(PXP) methodology can be used, as outlined by Agarwal & Umphress, 2008. This
follows the principles and values of XP, such as simplicity and feedback, but refines them to
fit a lone programmer. This methodology includes principles such as (Dzhurov et al., 2009):

 18

• Measure, track and analyse daily work
• Include use of continuous testing & integration
• Small releases
• Test-Driven Development

3.3 Chosen Methodology
PXP will be the methodology used throughout this project. Doing so will allow greater
flexibility when gathering requirements and ensure that a working version is always available.
This benefit can help mitigate the effects of extenuation circumstances and external factors
affecting the development time for this project. While the waterfall methodology usually
works well for pre-planned projects, the lack of flexibility due to a sole developer and time
frame wouldn’t allow for sufficient time to fix any issues. Incremental and Agile
methodologies both accommodate changes in requirements, fitting this project better. Since
incremental works best with a larger workforce, an agile methodology is best suited. PXP was
chosen as it is best suited to working within a limited timeframe and implementing the project
with a single person team.

3.4 Project Management
The GANTT chart (Appendix C) was the primary tool used for time management during this
project. This allowed for rough ideas on how long each section would take to complete,
allowing additional time if needed. Due to the anticipated more extended implementation
stage, this allowed for greater planning.

More details relating to the project management will be detailed in the design phase.

3.5 Conclusion
This chapter helped to choose a software methodology that suited the uniqueness of this
project. The chosen model, PXP, will be essential throughout the implementation of the
application. Having a methodology is extremely useful to ensure a plan is in place to reach the
final goal.

 19

4. Requirements
4.1 Introduction
This section details how the requirements for the system will be produced, as well as the
processes used to gather them. The methods used are discussed, the results will be analysed,
and requirements will be formed. This will ensure that the users’ needs are met, and
competitiveness over alternative systems is maintained.

Furthermore, to get a clear understanding of these requirements and to help with evaluating
them against the final project, the prioritisation will be detailed following the MoSCoW
technique. The four categories of prioritisation used are as follows (Hatton, 2008):

• Must: Requirements are not negotiable; the failure to deliver these requirements
would result in the failure of the entire project.

• Should: Features that would be nice to have if at all possible.
• Could: Features that would be nice to have if at all possible but slightly less

advantageous than the “Should”.
• Won’t: These requirements are not unimportant, but they will defiantly not be

implemented in the current software project. They may, at a later stage, be created.

Ideally, a range of methods would be used to gather requirements; however, this was not
entirely possible due to the Covid-19 pandemic and various restrictions. As a result, the
primary method for collecting requirements for this project will be analysing existing systems
and a small questionnaire. These techniques haven’t been affected by the pandemic and can
be completed with the same efficiency as before.

4.2 Requirements from Research
The research conducted previously gauged an initial understanding of basic requirements.
Further analysis of existing systems helped establish requirements by comparing features
between applications and bridging any gaps found. Analysis of caffeine addiction's effects
helped with critical components that can be implemented into this application.

4.3 Requirements from Questionnaire
To help understand the use of a caffeine tracking application in the general population, a
questionnaire was distributed to fellow students and friends. Google Forms was used to
create this (see Appendix D), using a range of caffeine usage and tracking questions. The
questionnaire solely featured closed questions, with most questions being multiple choice.
Although open questions allow for more probing answers, they weren’t used to ensure the
recipient completed the entire questionnaire. The questions were also kept simple and easy
to understand to ensure the recipient understood the question and inputted a correct
answer.

A total of 17 responses were collected and analysed. The questionnaire was popular, and all
participants answered all questions.

 20

4.3.1 Analysis of Questionnaire
The first page asked for some basic personal information, which could not be tied to each
participant. This was included to see any correlation between the drinks consumed and the
personal data provided. An example of data found was those participants in the older age
brackets, 46 or above, mainly consume teas and coffees. In contrast, the younger age groups,
35 or below, mainly consume soft or energy drinks.

The first question (Figure 6) of the survey
helped gauge how many of the participants
consumed caffeinated drinks; as shown by
the results, all surveyed participants
consumed caffeinated beverages. This
wasn’t a surprise, as studies have shown
that 95% of the population consumes at
least one caffeinated drink once a week.

The next question (Figure 7) asked the
participants which types of caffeinated drinks they usually consume, with the answer being
split up into the appropriate groups. This question was asked to gauge which beverages are
the most consumed and should be the focal point of the application. The results show that
the primary beverage consumed is coffee and speciality coffees; therefore, the application
will be slightly aimed at monitoring these drinks. While the results also show that the
participants use all beverages, it is essential not to forget these either. The responses
gathered in this question helped influence requirement F10 with the application allowing
drinks added to be grouped into the categories asked in this question.

Figure 7: Questionnaire Results: What type of caffeinated beverages do you usually consume?

This question (Figure 8) asked the participants how many caffeinated drinks they consume
daily. It was used to determine roughly how many drinks would be added to the system daily.
Over 70% of participants recorded that they consume more than five caffeinated drinks daily,
with nearly 30% consuming eight or more.

Figure 6: Question Results: Do you consume caffeinated drinks?

 21

Figure 8: Questionnaire Results: Roughly how many caffeinated drinks do you consume a day?

This question (Figure 9) was designed to gauge
how many participants knew how much caffeine
was in their drinks’. The results show that only
35% of participants knew their drink's caffeine
content. This highlights the importance of
informing users how much caffeine is in their
drinks and makes a stronger case to include
drinks from major brands within the application.
This question also raises concerns with users
who might not know how to log their drink into
the application if they do not know the caffeine
content. Therefore, it might be useful to include helpful hints as to how users can find this
information.

This question (Figure 10) was asked to see how
many participants currently tracked their
caffeine intake. This data was used to reaffirm
the system's need further, as the results show
that only 11.8% of responses now do so.
Although this is a low percentage, it was
somewhat expected, as tracking caffeine intake
is not as mainstream as tracking calories or
water.

The next question (Figure 11) was designed to
see how many participants would find it helpful
to track their caffeine consumption. Of the
responses, 52.9% said they would, and 35.3%
said they might find it helpful. Considering that
only 11.9% replied that they currently track their
consumption, finding that 88% of participants
would likely use the application further reaffirms
the need for the system.

Figure 11: Questionnaire Results: Would you find a
system that makes it easy to track your caffeine usage
useful?

Figure 10: Questionnaire Results: Do you currently track
your caffeine usage?

Figure 9: Questionnaire Results: Are you aware of how
much caffeine is in the drinks you consume?

 22

4.3.2 Summary
After developing a questionnaire and analysing their results, the data was collated into
functional and non-function requirements, which are listed in the following section.

4.4 Requirements
Requirements for this project will be split between function and non-functional. Non-
functional requirements outline underlying functions within applications, such as security,
performance and usability and are crucial to making a system effective.

Non-Functional Requirements
ID Requirement Priority
NF1 Support a minimum of iOS 14 Must
The application should be able to run on any mobile device that runs iOS version 14.
NF2 Responsive to all mobile screen sizes Must
The application should have a responsive user interface that is scaled to fit all iOS devices
regardless of screen size.
NF3 Easy to use Must
The application must be easy for all users to use.
NF4 User-friendly interface Should
The user interface should be easy to navigate, and the user should not get lost in the
application. The user interface should also be visually appealing and accessible.
NF5 Follow Apple’s Human Interface Guidelines Must
The application must follow all of Apple’s Human Interface Guidelines (Apple, n.d.-j).
NF6 Low or no internet connection Should
The application should continue to work seamlessly when the user has a weak or no internet
connection.
NF7 Security Must
The application must take all reasonable measures to keep user information secure. All
applications uploaded to Apple’s App Store or TestFlight systems must include encryption
of user data.
NF8 Code Documentation Should
All source code should be documented to a reasonable level.
NF9 Data Backup Could
Data should be primarily available offline, with the option to backup data to a user’s iCloud
account should they request it.

Table 2: Non-Functional Requirements

In addition to the non-functional requirements, functional requirements are also crucial by
specifying precisely what the system should accomplish. They detail the system's basic
facilities, and all these functionalities should be incorporated into the system.

 23

Functional Requirements
ID Requirement Priority
F1 Users must be able to access the system without login Must
Users must be able to open the application and be presented with the application without
the need to login or register.
F2 Ability to track caffeine Must
The user must be able to input the amount of caffeine they have consumed in one day. This
can be done by any of these methods:

• Manually entering an amount of caffeine in milligrams (mg)
• Creating a custom drink where the user defines the parameters of the drink and how

much caffeine there is
F3 Easy to track caffeine Should
The user should be able to track their caffeine consumption, as defined in F2, with relative
ease.
F4 Users can change caffeine metabolism preferences Must
The users must be able to alter the metabolism settings to best suit their bodies. There
should be ‘soft’ limits on the settings to ensure appropriate values are entered.
F5 Users must view privacy policy Must
Allow a privacy policy to be viewed within the application. This is a legal requirement for
applications published to Apple’s App Store.
F6 Allow users to receive notifications Should
Users are to first be prompted to allow notifications and then receive notifications at set
times throughout the day, which the user can customise.
F7 Ability to view insights into caffeine intake Should
Users should be able to view various insights into their caffeine intake, such as averages,
highs, lows, and various views in charts.
F8 Onboarding Could
Allow new users to be guided through the application with an onboarding process,
customising various settings using personal information, such as height and weight.
F9 Deleting Drinks Must
The user must be able to delete any drinks added in case of mistakes.
F10 Categorise Drinks Could
Drinks should be able to be grouped into categories, such as coffees and teas, to aid in
analysis.
F11 Ability to record branded drinks Could
Allow users to track drinks that are created by other companies, such as Starbucks or Coca
Cola.

Table 3: Functional Requirements

4.5 Summary
The requirements gathered above will be helpful in the latter stages of the project. They can
be used as clear milestones of the development phase and, once implemented, will be tested
using the methodology chosen. During the development stage, there is always the chance
that requirements be changed slightly, and if this occurs, it will be stated in the
implementation stage.

 24

5. Design
The chosen project methodology, Personal Extreme Programming, requires detailed designs
to ensure that the project is implemented efficiently. This chapter will document all design
specifications for the application, including database designs, user interface mock-ups and
testing plans.

5.1 Project Initiation
This section will detail core system functionalities to ensure the application is maintainable
and usable.

5.1.1 Version Control
All source code will be stored under version control during the development phase. Doing so
allows for high project maintainability with control over project revisions. GitHub will be used
as it has high availability and great support for continuous integration (CI), allowing unit tests
to be performed. GitHub will also be used to store any issues found during the
implementation and testing stages.

The system will be built and tested under a ‘dev’ branch to ensure any changes made can
easily be rolled back to a working version. Once committed and automated tests are
completed, the branch will be merged into the ‘main’ branch.

5.1.2 Database
The application will be primarily developed for iOS devices and the chosen programming
language, Swift, is the native development language for these devices. CoreData is an object
graph and persistence storage framework provided for these systems (Apple, n.d.-a).
CoreData allows seamless integration with CloudKit, allowing application data to be stored in
the user’s iCloud account for synchronisation between devices (Apple, n.d.-b).

CoreData will be used to store all the available drinks to be tracked, including any added by
the user and a log of when the user consumed caffeine. This project will not be implementing
an authentication system because all data is stored locally within the user’s Apple ecosystem.
CloudKit also provides the base framework should authentication be needed later.

A considered alternative was Google Firestore (Google, n.d.). Firestore is a real-time database
which stores data in a JSON format. Whereas CoreData stores the user’s mobile device data,
Firestore stores data on a server. While keeping data on a server would help prevent any data
loss from mobile data corruption, it requires a constant internet connection for the
application to work. Since one of the requirements is to allow the application to be accessed
from any location, CoreData was chosen as the system would still work offline, backing up
data when an internet connection is available.

5.1.3 Security & Privacy Considerations
This section will explore different security issues and how they will be managed during the
project development.

 25

In addition to security considerations, numerous privacy issues need to be considered. Apple
maintains a high focus on privacy, and numerous privacy issues had to be completed to allow
the application to be uploaded to their App Store and TestFlight systems.

5.1.3.1 Local Data Storage
Data stored within the application that contains personal information, such as email
addresses or passwords, would need to be kept securely. Since this application will not
require the user to log in or register, personal data stored within the application will be
minimal. If personal data is stored within the application, it will be held in the user’s keychain
using Apple’s Keychain Service API (Apple, n.d.-c). This allows for small amounts of data, such
as passwords or access tokens, to be stored within an encrypted database on the user’s
device.

5.2 Testing
Testing is significant to keep the products high quality and satisfy the end-user. Testing for
this application will be done at various stages throughout the project and detailed below.

Testing will be completed both by myself and a group of alpha testers. The alpha testers will
be responsible for providing feedback on designs and testing each build published.

5.2.1 Design Feedback
Throughout the designing process, high fidelity designs will be sent to the alpha testing group
to gather feedback and help to improve the designs. Multiple designs will be created in some
cases, and a ‘favourite’ is chosen. The group will look at various features of each design,
including;

• layout
• accessibility
• features
• relevance to requirements

Their feedback will be used to produce the final artefact during the implementation stage.

5.2.2 Application Testing
The primary focus of the alpha testing group is to test the application on their own devices
physically. Each build is published to Apple’s TestFlight system, which allows applications to
be distributed to testers and handle feedback and crash reports. With each build published,
testing notes can be added to alert the testers on what features have been implemented or
fixed and what they need to focus their time on.

 26

5.3 Sequence Diagrams
A sequence diagram has been created to help visualise how certain functions are represented
in the system. The diagram will show how processes and entities are involved with the
application, which will be implemented into the application.

Figure 12: Sequence Diagram: User adding a drink to the system

The diagram above (Figure 12) shows the sequence of events if a user were to add a beverage
they have consumed to the system.

 27

5.4 User Interface Designs
This section will explore the different design aspects used as a reference during the
implementation stage. All designs will follow Apple’s Human Interface Guidelines (Apple, n.d.-
j). The system's requirements in the previous chapter have helped draft these designs.

5.4.1 House Styles
Several house styles will be created and used to provide a consistent and clear user interface
to ensure that the application is consistent in design.

5.4.1.1 Colour Scheme
The application will be designed with a simple and natural colour scheme. The primary colour
used within this application design is light blue. With the rise of dark mode being used within
devices, light blue fits well with both a light and dark mode setup.

Figure 13: Application colour scheme

In addition to the primary colours shown above, colours are defined for various events
throughout the application. Figure 14 shows the colour scheme used for all graphical
representations of data. Higher caffeine consumption will result in data points changing
colour up the scale, with red being used for the highest levels.

Figure 14: Insights Graphs Colour Scheme

5.4.1.2 Application Icon
An application icon is arguably the most vital feature when
creating a brand. Simplicity is critical when designing an icon,
and a complex icon might not fully engage the users. Some of
the most popular brands have simple and easy to recognise
icons. The icon should also be flexible, and work seamlessly on
various forms of materials, such as applications and adverts, in
light and dark mode.

Figure 15: Designs for Application Icon

 28

The two icons above represent a certain degree of minimalism, which has become
increasingly common alongside modern applications. Both icons are displayed on the primary
colour detailed above.

5.4.1.3 Application Logo
Modern applications commonly have a logo to supplement an icon, usually containing the
application icon alongside the application name. Again, a simple logo is far better than a more
detailed one, and the logo designs aim to follow that.

The two logos above are both simple and feature the icons designed above alongside the
application's name. Two logos were created and sent to the alpha testing group, gathering
feedback. Overall, they found the second logo cleaner and thought it provided a better brand.

5.4.2 UI Wireframes
This section outlines the UI wireframes used for each main page. As the first physical designs
of the interface, these low-level designs help provide a basic overview of how the interface
would be displayed. Having these designs early in the life cycle is beneficial to the
development, as later, more detailed designs are based on these initial ones.

Several simple wireframes were created at the start of the design process. These UI
wireframes were designed with Procreate for iPad and detail the rough shape that each page
offers.

Figure 17: Initial hand UI Wireframes

Figure 16: Designs for Application Logo

 29

The hand-drawn UI wireframes in Figure 17 shows how the application will look stripped
down to basics. These have been inspired by previously researched applications (see
literature review above) and are based on giving the user as much feedback as possible by
using charts.

A UI Wireframe kit was used from these initial sketches to create a clearer version for each of
the main pages, detailed over the following pages.

5.4.2.1 Home Screen
The first screen that the user will be presented with once opening the application will be the
home screen. This will also be accessed by the user clicking the first tab in the navigation bar.
A UI Wireframe is shown in Figure 18.

It will provide the user with the first look at their caffeine levels by showing a ‘Highlights’
panel. This panel will quickly inform the user how their current day is going and indicate how
much caffeine they can consume throughout the day to stay within their limit.

Following this, a list will be displayed which shows all the drinks the user has consumed that
day. It will display the drink name, date and time consumed and how much caffeine was in
the drink.

The bottom of the screen will display a button, allowing users to add a new drink to their log.

Figure 18: Annotated UI Wireframe for Home Screen

 30

5.4.2.2 Trends Screen
The trends page allows users to understand their caffeine intake over time better. The trends
screen will be the second tab available from the navigation bar. A UI Wireframe is shown in
Figure 19.

The application will display various graphs highlighting the user’s caffeine levels over time,
such as the last four weeks. The charts will use the colour scheme detailed above to inform
the user on days their caffeine levels were high.

Figure 19: Annotated UI Wireframe for Trends Screen

 31

5.4.4 High-Fidelity Designs
Following the UI wireframes, a series of high-fidelity user interface designs were created.
These designs were made with either Procreate for iPad or through XCode. These designs will
allow for more detailed styling of the application and show how individual components will
be styled.

5.4.4.1 Home Screen Overview
A brief daily overview will be shown on the home screen, which will allow the user to get an
insight into their current caffeine levels quickly. Initial designs were made to resemble the
Activity section in Apple’s Fitness app for iOS (Figure 20), and therefore provided a design that
users were potentially already familiar with.

Two different designs were created and sent to alpha testers to gather feedback on each style.

In the first design, a light grey background was chosen, which would change to dark grey upon
the user switching to dark mode. It features a main heading with a target icon. A circular bar
will display their current caffeine percentage concerning their daily target. The right side
details their current caffeine levels, calculated with their caffeine metabolic preferences,
which change as the day goes on. It also shows their total amount of drinks consumed and a
text indication of their caffeine intake against their limit for the day.

The second design remains a single colour, dark grey, in light and dark modes. This design also
features a circular bar which displays their current caffeine percentage concerning their daily
target. The right side details small information about their current caffeine levels, their total
daily intake, and their caffeine levels at their set bedtime.

Following feedback from alpha testers, the first design was chosen as it better integrates with
Apple’s Human Interface Guidelines, specifically about being dark mode enabled, and offers
more concise information.

Figure 21: Caffeine Intake Highlight high-fidelity designs

Figure 20: Activity section in Apple's Fitness app

 32

5.4.4.2 Home Screen
A high fidelity design was created for the entire home screen following the overview panel
detailed above. This is the most critical design since this is the single page that all users will
access every time they access the application.

The Highlights section contains the detailed design as outlined above.

In addition to this, a list is shown containing all the drinks that the user has consumed that
day. The drink's name is displayed alongside an icon to represent the drink visually. Different
icons would be shown for other beverages, such as a can for soft drinks and cups for coffees.

The Add Drink button will be fixed to the bottom of the screen to ensure it constantly remains
in one place and can be easily accessed with one hand. The button will be rounded to maintain
consistency with the Highlights panel.

Figure 22: Home Screen High Fidelity Design

 33

5.4.4.3 Trends Screen
This page shows a graphical visualisation of a user’s caffeine intake. This page has been
changed from the original wireframe design, as feedback suggested that only one page
contains a calendar and that this page was the least necessary. The trends screen will be
available from the second navigation tab.

The design below shows one chart detailing the user’s caffeine intake over the past week. In
the finished application, it is expected that there are more comparisons available, such as the
past month and four-week average.

Figure 23: High Fidelity designs for Trends screens

 34

5.4.4.4 History Screen
The history screen is accessed from the third tab in the navigation panel and shows the user
their caffeine intake history. It features a calendar view displaying the current month, with
controls allowing users to change the month. This idea builds on previously researched
applications, showing an essential list requiring users to scroll to access earlier dates.

Following the calendar is a list, which shows the drinks consumed on the day the user has
viewed the calendar. The list allows users to swipe right on each row if a drink needs to be
deleted.

Figure 24: High Fidelity design for History screen

 35

5.4.4.5 Add Drink Screen
The add drink screen will be presented as a modal accessible from the home view. The modals
will be presented as ‘Sheets’, covering the entire page. Apple’s Human Interface Guidelines
recommend showing these pages as modals and state that presenting modals “Helps people
focus on a self-contained task or set of closely related options” (Apple, n.d.-j).

The first modal presented shall display a button to access the second modal, allowing users
to create custom drinks. In addition to this, the user can enter a manual caffeine quantity to
add to their log should they wish to record their drink quickly.

The second modal allows users to add a custom drink, such as home-brewed coffee, to the
application to track this drink in the future. It requires some basic details, such as the name
and type of drink and the measurement method for the caffeine. Two types of measurements
are available.

• Fixed: Allows users to create drinks with fixed caffeine content. This can be useful for
drinks where the caffeine levels don’t change, such as fixed-sized drinks from coffee
shops or tablets.

• Concentration: This allows users to create more flexible drinks with caffeine content
based on the size of a drink. This is more useful for drinks in various sizes and with
caffeine content that changes accordingly. Examples of this include soft drinks and
filtered coffees.

Figure 25: High Fidelity design for Adding Drinks

 36

5.4.5 Testing on High-Fidelity Designs
All the high-fidelity designs created above were sent to the alpha testing group. This was to
ensure that no essential points were missing from the designs, and if so, these would be
added during the implementation stage. The designs were also analysed against the system
requirements to ensure they had been met.

5.4.5.1 Changes based on Testing
Following the feedback on the high-fidelity designs, a few minor changes were made before
the implementation stage.

The first change was in the history screen. The
feedback retrieved suggested that the designs about
the list of drinks would be better designed to exclude
the date, as the date is available in the calendar
above. They also thought the drink name should be
clearer and more focused on the user. The resulting
change shown in Figure 27 has a cleaner look but keeps the date within the view. This was
done to reaffirm that the drink was consumed on that day but takes the focus away from the
date and more towards the drink name, which is
now in a bold font.

The group suggested a second change in the trends
screen. The original design was for the charts to
take up about 70% of the screen; however, the
feedback suggested that the charts were too big
and should be made smaller. This change was made
and can be seen in Figure 26.

5.5 Summary
This chapter used the previous requirements to construct a series of designs for the
application. Low-fidelity designs were initially made to get an idea of the initial layout, and
following this, more detailed high-fidelity designs were created. These designs were sent for
user feedback, and a few changes were made to finalise them.

Figure 27: Changes made to the list of drinks in the
History screen

Figure 26: Changes made to the trends charts

 37

6. Implementation
This chapter outlines the implementation of the application, including back-end architecture
and front-end interfaces.

6.1 Programming Language
As the application will be developed for iOS devices, two supported languages will be chosen
from, Swift and Objective-C. Objective-C is the older of the two and is a member of the C
programming language family. The Swift programming language was developed as a
replacement for Objective-C and allowed for Objective-C, C, and C++ code to be complied
alongside Swift. Due to Swift having more modern features, such as the introduction of
SwiftUI, Swift was chosen for this project.

6.2 Programming Resources
Since the author has little to no knowledge
of the Swift programming language, further
learning was needed to complete the
implementation stage. This was necessary
as Swift has a vast quantity of external
libraries which could be used to enhance
the application further; therefore, a better
understanding was needed.

The first method used was Codecademy
(Codecademy.com, n.d.). This contains an
extensive catalogue of lessons for various
programming languages, most free. There
were three courses on the website for the
Swift programming language, as shown in
Figure 28. These courses served primarily as
an introduction to the language and often
would repeat content or explain previously
known content.

The second website used was LinkedIn
Learning (LinkedIn Learning, n.d.), which
offered more advanced and often targeted learning. Experts often create these courses in
their fields with a broad skill set. Two courses were chosen and completed before the
implementation phase was started to solidify the knowledge of Swift better; these are shown
in Figure 29.

These two courses were chosen as they were both recently updated with content from the
latest Swift version and included SwiftUI, which will be used for the interface design of this
application. After completion, there was more than enough knowledge to complete this
project.

Figure 28: The three courses completed on Codecademy

Figure 29: The two courses completed on LinkedIn Learning

 38

6.3 Integrated Development Environment Choice
With the project being coded in Swift and based on iOS applications, it made sense to develop
the application with XCode (Apple, n.d.-o). This is the default IDE used to develop iOS
applications on Apple’s macOS platform. The application is developed by Apple and generates
the entire code base needed to begin development. Furthermore, the IDE is optimised to run
on macOS systems and is very simple. Alternatives, such as Eclipse (Eclipse, n.d.) or IntelliJ
IDEA (JetBrains, n.d.), would have worked for Windows platforms but would have
encountered problems on macOS. The decision was made to stick with the Apple ecosystem
to ensure the best compatibility.

Using a built-in simulator, which can run any Apple device, was vital as a physical device was
not always available. This software helped with the front-end development by allowing a
simulator to be shown within the development environment, saving time by removing the
obligation to compile and run on a physical device. In the latter stages of development, a
physical device was used to understand the user experience better.

6.4 Version Control
The design chapter details that the project will be stored using version control on GitHub to
back up the project on a globally accessible platform. The repository was committed at the
end of crucial development phases but did not represent any development milestones.

The repository is available here: https://github.com/ryan-bush/MyCaffeine

6.5 Common Components
The project will reuse several components to help provide higher code maintainability and
consistency. From a development perspective, reusing components will be more efficient by
preventing duplicated code and saving time.

6.5.1 Global Styling
Rather than externally storing and
referencing the hex values used for colour
generation, defining colours in one place
is commonplace. This is done within the
XCode IDE and iOS projects by utilising the
Assets catalogue, which is a single place
where all colours and images are stored.

Each colour used is semantically named to improve code readability when referenced later.
The Assets catalogue also allows the definition of light and dark colours, which can be used
when users switch their devices between light and dark mode. This saves additional code
within the user interface as colours are swapped automatically. Figure 30 shows the colours
used within the project and an example of a single colour definition sharing two colours, one
for light and one for dark modes.

Figure 30: The Asset Catalogue showing colours, including the
difference in light and dark modes

 39

6.5.2 Application-wide Icons
Similarly to the styling, the Asset
catalogue is also used to store icons and
images used throughout the
application. Whereas colours can store
light and dark mode colours, images
stored in the catalogue contain three
different styles. These styles are known
as 1x, 2x and 3x and refer to the size
difference from the original. For
example, the image saved as 3x would
be three times the size of the image
stored as 1x. There are significant
advantages when building an
application that runs on multiple
devices, such as an iPhone 6, compared to an iPhone 13 Pro Max, with vastly different screen
sizes. The smaller phone would use the 1x image, whereas the larger would likely use the 3x.
Doing so ensures that the image used is of the highest quality to the user.

The images saved to the Asset catalogue include the application logo and the icons defined
later in the project. An example of how the images are stored can be seen in Figure 31.

6.5.3 Helper Functions
Helper functions are separate functions typically located in a different file that performs part
of the computation of another function. They help make programs easier to read by giving
more descriptive names and making it easier to reuse code. The helper functions for this
project are in the file Helpers and can be found at:

MyCaffeine > MyCaffeine > Base > Helpers

6.5.3.1 Calculate Metabolism
Caffeine metabolism is calculated using the exponential decay formula (P(t) = P0e-rt). Since
this is a more complex algorithm than others, it was in a helper function as it will likely be
used in several places across the application. The function can be seen below in Figure 32.

Figure 32: Helper function to calculate caffeine metabolism

6.5.3.2 Retrieve Current Caffeine Level
Another algorithm within a helper function calculated the user’s current caffeine level as a
percentage. Although a relatively simple calculation, using a helper function helps to reduce
the repetition of code. The function can be seen in Figure 33.

Figure 31: An example of how images are stored in the assets catalogue,
including multiple sizes

 40

Figure 33: Helper function to retrieve the current caffeine percentage

6.5.3.3 Get Bedtime Caffeine Level
The last helper function to be detailed is calculating the user’s bedtime caffeine level. Doing
this will allow the user to see how much caffeine will be in their body at their chosen bedtime,
which users can change in the settings. The implementation of the function can be seen below
in Figure 34.

Figure 34: Helper function to retrieve the user's bedtime caffeine level

6.6 Core Data
As detailed in chapter 5.1.2, Core Data would be used as the primary storage structure in the
application. Using Core Data allowed for simple implementation, with an option to enable this
done when first creating the project.

6.7 User Interface
When constructing the user interface, two frameworks exist when developing solely for iOS
devices – UIKit (Apple, n.d.-d) and, more recently, SwiftUI (Apple, n.d.-m). These frameworks
contain several user interface components and varying methods of implementation.

SwiftUI primarily uses programmatically constructed interfaces using a declarative syntax “so
you can simply state what your user interface should do” (Apple, n.d.-m). SwiftUI also allows
for changes such as size, font, and colour within the decretive syntax, allowing for quicker and
more visual editing of components within the code. SwiftUI also enables an integrated live
preview in XCode, allowing visual representation without compiling projects.

Both UIKit and SwiftUI code can be used interchangeably. The SwiftUI framework was chosen
for this project as it allows for a faster development speed and enables a built-in live preview.
Each user interface was clutter-free and minimalistic to allow greater flexibility.

The primary UI views are shown in the hierarchy below in Figure 35.

 41

Figure 35: Major UI views of the application

6.7.1 Launch Screen
Since the first screen shown to a user is the
launch screen, this was implemented first. This
screen is displayed for approximately three
seconds before the application loading;
however, this could be shorter or longer
depending on the device and the application
loading time.

The implementation of the launch screen is
relatively easy in XCode. A new storyboard was
created from the new file tab and set as a
launch screen. The background was then
changed to the launch screen background
defined in the assets catalogue, and the logo
was added to the centre of the screen.

Apple requires a launch screen also conforming
with its Human Interface Guidelines (Apple,
n.d.-j). The implemented launch screen can be
seen in Figure 36.

Figure 36: The implemented launch screen

 42

6.7.2 Navigation
A navigation bar was created to assist users with navigating around the main pages of the
application. A TabView (Apple, n.d.-e) was used as it easily allows for switching between
multiple views and allows labels and images to be easily integrated. This was created on the
MainView struct, which serves as the default screen when opening the application for the
first time. By default, the HomeView is displayed to allow users to see their day overview
immediately.

Figure 37: Implementation of the TabView within MainView

Each tab item contains a label and an icon, which have been chosen to allow better
representation for the user of what the page does. This is also recommended in Apple’s
Human Interface Guidelines.

A light grey colour is applied to the background of the TabView, and the primary colour
scheme is used for the label and icon.

Figure 38: TabView Implemented as shown in light and dark mode

 43

6.7.3 Home View
The HomeView will be the application’s landing page and, therefore, should be clutter-free
so the user doesn’t feel overwhelmed. The screen will consist of a highlights panel, which
visually shows the user an overview of their current caffeine intake and a list of the user’s
drinks for the day. The user will be able to add drinks by clicking on an ‘Add Drink’ button.

6.7.3.1 Highlights Panel
The implementation of the highlights panel, as designed in chapter 5.4.4.1 Home Screen
Overview, was the first focus of the home view.

After creating a blank card, with the colour set to vary between light and dark modes, a circle
is drawn, representing the user’s caffeine intake up to their maximum. By applying a
lineWidth to the stroke syntax, the circle is turned into a ‘ring’ shape. The user’s current
caffeine percentage would then be retrieved, and then the circle is trimmed to match the
percentage. The implementation of this can be seen below in Figure 39.

Figure 39: Implementation of the percentage circle on the highlights panel

The rest of the panel involves various text views that would display more information to the
user, such as total drinks for the day and current caffeine level. The final implementation of
the highlights panel can be seen below in Figure 40.

Figure 40: The result of the implementation of the highlights panel is light and dark modes

 44

6.7.3.2 List of Drinks
Below the highlights panel, a list of all drinks the user has consumed today will be shown. The
implementation of this was relatively easy using Core Data and List views. First, by checking if
the list is empty, a text view can be displayed, alerting the user to add drinks. After this, the
data is looped through to ensure the drinks' date matches today's date before showing the
drinks in a list view and the icon and caffeine content.

Figure 41 and Figure 42 show how the list was implemented and the result within the
application.

Figure 41: Implementation of Today's Drinks in the HomeView

Figure 42: Result of the implementation of Today's Drinks

6.7.3.3 Add Drink Button
The final component of the Home view was the ‘Add Drink’ button, which will float at the
bottom of the screen. Using SwiftUI’s Stack Views (Apple, n.d.-g), components can be layered

 45

on top of each other to create a ‘floating’ effect. This was applied when creating the button.
The implementation of this button can be seen below in Figure 43.

Figure 43: Implementation of the 'Add Drink' button

6.7.4 Add Drink View
The AddDrinkView will serve as the location where users can log their drinks to the
application. It will feature a list of all the user's custom added drinks and their icon and
caffeine content. The list will be searchable to allow the user to find the drink they are looking
for in a large list. There will also be a text field that allows the user to manually enter a caffeine
quantity, up to 400mg, if the user wants to add a drink without creating a new drink quickly.

6.7.4.1 Manual Caffeine Entry
The first component implemented on the AddDrinkView will be the ability to add a quantity
of caffeine into the application manually, without the need to track a specific drink. This will
be used by users who are in a rush to track consumption.

A text field that only allows the users to enter numbers shows the Numpad keyboard on their
device. By displaying this keyboard, it reduces the chance of user input error. There is then a
quick check to ensure no invalid characters are entered by filtering out only numeric
characters.

A button is located alongside the text field, which allows the user to log the quantity to their
log. It first ensures the amount entered is above zero before referencing the Core Data object
and saving the amount to the object. If the user enables this, the application then
synchronises their entered caffeine quantity to their Health app. Finally, the sheet is closed,
taking the user back to the HomeView.

The implementation of this component is shown in Figure 44.

 46

Figure 44: Implementation of manual entry of caffeine

6.7.4.2 List of Custom Drinks
The next component implemented in this view shows the user a list of drinks created by the
user. This was a simple component to implement, as it simply referenced the Core Data object
and looped through all the drinks that the user had added. They are displayed in a list
alongside their icon and caffeine quantity. If the user clicks on a drink, a Half Sheet will be
displayed, revealing further information about the drink and displaying a button to add the
drink to their log. If the drink created has a caffeine quantity that changes per drink size, then
a TextStepper is shown, allowing the user to change the drink size. In addition to this, the list
is searchable, which allows the user to find the drink they want if the list starts to grow.

The implementation of these components can be seen in Figure 45 and Figure 46.

 47

Figure 45: Implementation of the list showing users created drinks

Figure 46: Result of the implementation of the list view with the HalfSheet and TextStepper

 48

6.7.5 Trends View
The trends view will be home to a couple of graphs to help users understand their caffeine
consumption over a short period. The charts will use the SwiftUICharts library (mecid, n.d.),
as detailed in chapter 6.8.3 SwiftUICharts. Initially, two charts will be available to view, one
describing the user’s caffeine consumption over the past week and the other for the past
month. The charts will use the colour scheme set out in chapter 5.4.1.1 Colour to display to
the user the days their caffeine consumption is high.

Figure 47 below shows how the chart was implemented. It starts by looping through the past
seven days and retrieving the caffeine content of every drink consumed on that day. The
points are then appended to the chart data structure after being assigned a colour based con
the user’s daily caffeine limit. A similar approach was followed for the monthly chart but
looping through the last 28 days.

Figure 47: Implementation to build a chart for caffeine consumption over the past week

 49

6.7.6 History View
The history view will allow the user to go back in time and view their specific caffeine
consumption on any given day. There will be a calendar which the user can navigate to select
the particular day they wish. On choosing the date required, a list is shown below detailing
the drinks they consumed on that day.

The list is built similarly to the one displayed on the HomeView, looping through each drink
and checking if the calendar date matches the user's selected date. Each drink is shown with
an icon and caffeine quantity.

Figure 48: Implementation of the list shown on the History View

The list on this view also allows users to delete the drink from their log. Deleting items from
data structures is typically a difficult feat; however, Core Data makes it easy. The syntax
onDelete is appended to the List with a function to be performed. The function takes the
offset index of the item deleted, loops through it, and removes it.

Figure 49: Implementation required to delete the item from the list

 50

6.7.7 User Notifications
It was deemed necessary from the application's requirements to send notifications to the user
when they choose.

The user will be able to customise when they receive notifications from a page located in the
Settings View. If the user hasn’t visited this page before then, the application will ask the user
for permission to send notifications. The user can then create a notification at a time to suit
them, and once created, the list is updated. The user can also delete notifications in the same
method as deleting drinks in the previous chapter.

The application will use SwiftUI’s UNNotificationManager (Apple, n.d.-f) to authorise, load,
create and send notifications. The implementation can be seen below in Figure 50.

Figure 50: Implementation of Notifications

 51

6.7.8 Apple Health Integration
Along with notifications, it was requested in the requirements that the user can synchronise
their caffeine intake to Apple’s Health application. This is all done using HealthKit, which
provides a central repository for health and fitness data on iPhone and Apple Watch (Apple,
n.d.-g).

Along with notifications, it was requested in the requirements that the user can synchronise
their caffeine intake to Apple's Health application. The user will be asked to provide access to
allow the application to write data to their Caffeine and Water data. If the user denies
permission, then the application will not write any data through HealthKit, and the user would
have to enable this through the Health app in the future. The application will use a
HealthKitManager to contain all the functions required to initialise, authorise, and save data
to HealthKit.

Initially, an HKHealthStore object is made to request permission to share data, and once
granted is used to save new samples to the store. A check is first made to ensure that
HealthKit is available on the device, as it is not available on devices that run macOS or iPadOS.
The authorisation function asks the user for permission to write caffeine and water data to
HealthKit and is called when the application is opened for the first time. The implementation
of these functions is shown below in Figure 51.

Figure 51: Implementation of HealthKit functions

Two functions are then created to save the data to HealthKit, once for water and one for
caffeine. The implementation of the caffeine function is shown below in Figure 52.

 52

Figure 52: Implementation of HealthKit function to save caffeine data

6.8 External Libraries
Several external libraries were used to enhance the application and reduce implementation
time. These libraries are detailed below.

6.8.1 SF Symbols
SF Symbols is a library of iconography designed to integrate seamlessly with San Francisco,
the system font for Apple platforms (Apple, n.d.-k). The symbols can be customised in font-
weight and scale and automatically align with text added to the user interface. These symbols
will be used throughout the application, such as TabBar.

6.8.2 Flaticons
In the design phase, icons were used alongside drinks so that
users could visually compare different beverages. A series of
icons were used from Flaticons (Flaticon, n.d.). These images all
conform to the same style to enhance the user interface and
include a range of drinks. The user will be able to select which
icon they want to associate with specific beverages themselves.
Some of the icons used can be seen in Figure 53.

6.8.3 SwiftUICharts
To give the user a better representation of their caffeine
consumption over a period, the application will use charts to
display information. Designing charts from scratch would have taken a large portion of the
implementation stage; therefore, it was decided early on that an external library would be
used to simplify this process.

SwiftUICharts (mecid, n.d.) was chosen as it offers an easy implementation method and great
customisation features. It allowed scaling colours to be used and defined in the design
process.

6.8.4 HalfASheet
SwiftUI includes Sheets (Apple, n.d.-h) which can be used to display a view over an existing
view. A sheet helps people perform a distinct task that’s related to the parent view without
taking them away from their current context (Apple, n.d.-l). This method was used when
displaying the Add Drink View over the Home View, as it allowed the user to easily back out
of adding a drink without reloading the view.

Figure 53: A few of the icons used from
Flaticons

 53

It was deemed necessary in some locations that a full-screen sheet was not required, and
instead, a smaller one was ideal. SwiftUI’s Sheets can be set to cover half a screen and must
support full screen; therefore, it was necessary to find a library with custom sheets.

HalfASheet (franklynw, n.d.) allows for precisely this. It can be set as a whole sheet or resized
to fit a proportion of the screen. This method was used when users confirmed what drink they
wanted to log in and for help navigating the metabolic preferences within the settings view.

6.8.5 TextFieldStepper
TextFieldStepper (joe-scotto, n.d.) is a component that makes inputting numbers easier than
SwiftUI’s Stepper (Apple, n.d.-i). It will be used when the user inputs the size of drink they
wish to consume, as it allows for quicker changing of larger numbers.

6.9 Summary
This chapter has detailed several of the methods used throughout the implementation stage.
It describes the resources and software used to create the project and the methods used to
implement the features. Following this chapter will be a testing phase to ensure the
application works as expected and that there are no errors.

 54

7. Testing
This chapter will detail the tests undertaken throughout the implementation stage to ensure
that the application runs as expected and can provide a quality user experience.

Testing software is vital to ensure quality, safety, and reliability. Different types of tests will
be carried out to gauge what parts of the application work best and need improvements.

7.1 Primary Testing Methods
The primary testing method used during the implementation stage was to release builds to
Apple’s TestFlight system (Apple, n.d.-n). This allowed up to 10,000 testers to get early
previews of the application and provide feedback. For this project, it was decided that
releasing regular builds of the application to the TestFlight system would be massively
beneficial. It removes the pressure on the sole developer to test and instead allows them to
focus solely on implementation.

A total of 33 preview builds were uploaded to the TestFlight system for testers to access from
October 2021 to May 2022.

A brief set of update notes accompanied each build presented the first time they opened the
application after updating. This was used to alert the testers about what had changed and
been fixed in the update to allow accurate testing of features. Testers could provide feedback
via the iOS system and offer screenshots or recordings of bugs found. By reporting issues,
additional information was collected about the tester’s device, such as screen size and device,
which would further help resolve the problems.

A total of 63 pieces of feedback were collected this way, which proved substantial in resolving
bugs.

In addition to this testing method, GitHub issues were used to track bugs found during the
implementation stage by the developer. This allowed problems to be tracked and fixed before
being released to the TestFlight system. Only two issues were reported this way, with both
being marked as ‘enhancement’ rather than an actual bug.

7.2 Functionality Testing
Functionality testing concentrated on the system's functionality as represented in the
functional requirements. Tests were run on simulated devices and a physical iPhone 12 Pro
Max. In total, five different simulated devices were used, with a varying screen-sized, with the
devices used being:

• iPhone 8
• iPhone 11
• iPhone 11 Pro
• iPhone 13 Pro Max
• iPhone SE

This allowed for most currently used screen sizes to be tested. The results of the functionality
testing are shown in Table 4.

 55

ID Description Expected Result Result Grading
T01 Loading Application The user is shows the

home view
As expected Pass

T02 Application
Navigation

The user will be presented
with the corresponding
view after clicking on the
TabView

As expected Pass

T03 Application
Permissions

Application asks for
permissions for
notifications and Apple
Health

As expected Pass

T04 Creating Custom
Drink

Application allows the user
to create a new custom
drink, with name,
category, icon,
measurement method,
caffeine and optionally
water.

As expected Pass

T05 Log Custom Drink –
Fixed Size

Application allows the user
to log a custom drink with
a set drink size

As expected Pass

T06 Log Custom Drink –
Fixed Concentration

Application allows the user
to select a drink size and
adjusts the caffeine
quantity

As expected Pass

T07 Trends Chart Application automatically
updates the Trends Chart
after each change to
caffeine log

As expected Pass

T08 Delete Drink Application allows the user
to swipe to delete a drink
from the History View

As expected Pass

T09 Notifications Application allows users to
create notifications at a
time that suits them, and
the application notifies
them at that time.

As expected Pass

T10 Metabolic
Preferences

Application allows the user
to change various
metabolic preferences to
better suit themselves

As expected Pass

T11 Apple Health
Integration

Application allows the user
to synchronise data from
the application to their
Health app

As expected Pass

Table 4: Results of Functionality Testing

 56

The initial testing stage was a success, with all primary functions passing. This indicates that
the application works as expected and is bug-free.

7.3 Responsiveness Testing
As MyCaffeine is an iOS application, it must work on various devices with different shapes and
sizes. The user interfaces must be designed to allow the view to work seamlessly on any
screen size. Figure 54 shows how the application looks when running on devices with different
screen sizes.

Figure 54: Application running on three different simulated devices

The test shows that the application looks acceptable on all devices but looks better on larger
devices. This was somewhat expected as the application was primarily developed using an
iPhone 12 Pro Max with a larger screen.

7.4 Summary
This chapter detailed the testing of the application developed during the previous stage. The
primary goal was to ensure the application was error-free, with no significant issues. The
application was also extensively tested with a group of alpha testers on the TestFlight system
to provide excellent user testing. The next stage will evaluate the application, looking back at
the initial requirements.

 57

8. Evaluation
This chapter evaluates how successfully the project was implemented and examines the
initially planned requirements. This chapter will also reference the original project initial
document (PID) (Appendix A) to analyse how close the final artefact resembles the initial
plans.

8.1 Evaluation against Requirements
The application was evaluated against the requirements set out in chapters Error! Reference
source not found. and Error! Reference source not found.. The results are shown in Table 5.
All the requirements marked with a priority of Must or Should were met, with three marked
as Could failing.

Identifier Priority Requirement Requirement Satisfied
NF1 Must Support a minimum of iOS 14 Pass
NF2 Must Responsive to all mobile screen sizes Pass
NF3 Must Easy to use Pass
NF4 Should User-friendly interface Pass
NF5 Must Follow Apple’s Human Interface

Guidelines
Pass

NF6 Should Low or no internet connection Pass
NF7 Must Security Pass
NF8 Should Code Documentation Pass
NF9 Could Data Backup Fail
F1 Must Users must be able to access the system

without login
Pass

F2 Must Ability to track caffeine Pass
F3 Should Easy to track caffeine Pass
F4 Must Users can change caffeine metabolism

preferences
Pass

F5 Must Users must view privacy policy Pass
F6 Should Allow users to receive notifications Pass
F7 Should Ability to view insights into caffeine

intake
Pass

F8 Could Onboarding Fail
F9 Must Deleting Drinks Pass
F10 Could Categorise Drinks Pass
F11 Could Ability to record branded drinks Fail

Table 5: Evaluation against Requirements

8.1.1 Failed Requirements
As shown in the table above (Table 5), three requirements were not successfully implemented
into the application. The primary reason these were missed was the timeframe, with more
time allocated to the requirements that had a higher priority. In addition, the potential legal
requirements needed to add branded drinks into the project simply meant it wasn’t feasible
for this project once the implementation had started.

 58

Even though three requirements have failed, the project is still a completed application.

8.2 Methodology Evaluation
Before the project started, a methodology was chosen to set up the latter stages. The
methodology used has been relatively successful, with changes made during the testing phase
to help accommodate the remote development. Alongside this methodology, a GANTT chart
was created (Appendix C) to help with time management.

8.3 Time Management Evaluation
Time management was critical with such a short timeframe to complete a project of this scale.
Regular meetings were scheduled with their supervisor throughout the project to ensure the
project was on track and see if any help was needed. These meetings also allowed the project
to remain at the front of the schedule regarding other work completed during the academic
year.

Overall, the project progressed slowly in the initial months, heavily influenced by personal
reasons and the COVID-19 pandemic. These both affected the ability to visit campus and
access additional resources.

The project's timeline (Appendix C) was not kept to, with initial items being pushed back
significantly, resulting in a shortened implementation period. In the latter stages, more time
was spent throughout the day to ensure development targets were still met to mitigate this.

8.4 Future Work
After reflecting on the finished application and its drawbacks, there is the potential for large
amounts of future work to help polish the application more. This being said, the application
could quickly be released now without many drawbacks from a user perspective.

The biggest drawback is the lack of branded drinks in the application. This would have made
it much easier for users to easily add drinks they commonly consume, especially since they
hide their caffeine content. Ultimately, the unknown legal requirements made it impossible
to add this during the project’s timeframe; however, this would be a priority for the future.

Push notifications are currently fixed in terms of the content they deliver, with the only item
customisable to the user being the time they are given. A future change would be allowing
users to select some pre-defined options to make the notifications more engaging to the user.

Another potential future addition is supporting other platforms, such as Android. As shown
during the literature review, Android and iOS share roughly the entire market for mobile
platforms; therefore, porting the application to Android would further expand the
application’s reach.

Future work could also include the use of monetisation or advertising. Two of the three
researched applications have in-app purchases to unlock more advanced features, and this is
something which could be explored to achieve some revenue.

 59

8.5 Personal Conclusion
Once the supervisor approved the basic idea of the project, there was an instant belief that
the project would be completed with ease and on time. The project required a greater
understanding of programming languages which I had not covered before. Although worrying
to some, I believed this would help further develop some technical skills needed when
developing applications. The application also allowed me to develop new skills when
designing the application, something which I had rarely done before.

The minimal knowledge of the programming language used had little impact; however, as the
application grew, it started to put more constraints on the application. If the project were to
be completed again, far more time would be allocated to learning more about the
programming language and the tools used throughout the Apple ecosystem.

Many issues arose throughout the implementation stage, which was solved using internet
resources. These issues could be attributed to my lack of knowledge of the programming
language, and as more components were developed, fewer issues were found due to poor
understanding.

 60

References

Agarwal, R., & Umphress, D. (2008). Extreme programming for a single person team.

Proceedings of the 46th Annual Southeast Regional Conference: XX, 82–87.
https://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=83604201&site=ed
s-live

Alsaqqa, S., Sawalha, S., & Abdel-Nabi, H. (2020). Agile Software Development:
Methodologies and Trends. International Journal of Interactive Mobile Technologies,
14(11), 246–270. https://doi.org/10.3991/ijim.v14i11.13269

Apple. (n.d.-a). Apple Developer Documentation. Retrieved May 6, 2022, from
https://developer.apple.com/documentation/coredata

Apple. (n.d.-b). Apple Developer Documentation. Retrieved May 6, 2022, from
https://developer.apple.com/documentation/cloudkit

Apple. (n.d.-c). Apple Developer Documentation. Retrieved May 6, 2022, from
https://developer.apple.com/documentation/security/keychain_services

Apple. (n.d.-d). Apple Developer Documentation. Retrieved May 3, 2022, from
https://developer.apple.com/documentation/uikit

Apple. (n.d.-e). Apple Developer Documentation. Retrieved March 29, 2022, from
https://developer.apple.com/documentation/swiftui

Apple. (n.d.-f). Apple Developer Documentation. Retrieved May 3, 2022, from
https://developer.apple.com/documentation/usernotifications/unusernotificationcent
er

Apple. (n.d.-g). Apple Developer Documentation. Retrieved May 3, 2022, from
https://developer.apple.com/documentation/healthkit

Apple. (n.d.-h). Apple Developer Documentation. Retrieved May 3, 2022, from
https://developer.apple.com/documentation/SwiftUI/View/sheet(isPresented:onDismi
ss:content:)

Apple. (n.d.-i). Apple Developer Documentation. Retrieved May 3, 2022, from
https://developer.apple.com/documentation/swiftui/stepper

Apple. (n.d.-j). Human Interface Guidelines - Design - Apple Developer. Retrieved March 29,
2022, from https://developer.apple.com/design/human-interface-guidelines/

Apple. (n.d.-k). SF Symbols - Apple Developer. Retrieved May 2, 2022, from
https://developer.apple.com/sf-symbols/

Apple. (n.d.-l). Sheets - Views - iOS - Human Interface Guidelines - Apple Developer. Retrieved
May 3, 2022, from https://developer.apple.com/design/human-interface-
guidelines/ios/views/sheets/

Apple. (n.d.-m). SwiftUI Overview - Xcode - Apple Developer. Retrieved May 3, 2022, from
https://developer.apple.com/xcode/swiftui/

Apple. (n.d.-n). TestFlight - Apple Developer. Retrieved May 3, 2022, from
https://developer.apple.com/testflight/

Apple. (n.d.-o). Xcode - Interface Builder - Apple Developer. Retrieved May 3, 2022, from
https://developer.apple.com/xcode/interface-builder/

Barista. (n.d.). Barista - Caffeine tracker. Retrieved February 7, 2022, from
https://apps.apple.com/gb/app/barista-caffeine-tracker/id1570223740

Biørn-Hansen, A., Rieger, C., Grønli, T.-M., Majchrzak, T. A., & Ghinea, G. (2020). An empirical
investigation of performance overhead in cross-platform mobile development

 61

frameworks. Empirical Software Engineering, 25(4), 2997–3040.
https://doi.org/10.1007/s10664-020-09827-6

Codecademy.com. (n.d.). Swift Courses & Tutorials | Codecademy. Retrieved May 2, 2022,
from https://www.codecademy.com/catalog/language/swift

Daly, J. W., Holmén, J., & Fredholm, B. B. (1998). [Is caffeine addictive? The most widely used
psychoactive substance in the world affects same parts of the brain as cocaine].
Lakartidningen, 95(51–52), 5878–5883.
https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=9889511&site=
eds-live

Delia, L., Galdamez, N., Corbalan, L., Pesado, P., & Thomas, P. (2017). Approaches to mobile
application development: Comparative performance analysis. In 2017 Computing
Conference, Computing Conference, 2017 (pp. 652–659). IEEE.
https://doi.org/10.1109/SAI.2017.8252165

Dzhurov, Y., Krasteva, I., & Ilieva, S. (2009). Personal Extreme Programming–An Agile Process
for Autonomous Developers.

Eclipse. (n.d.). Eclipse desktop & web IDEs | The Eclipse Foundation. Retrieved May 6, 2022,
from https://www.eclipse.org/ide/

EFSA Panel on Dietetic Products, N. and A. (NDA). (2015). Scientific Opinion on the safety of
caffeine. EFSA Journal, 13(5), 4102.
https://doi.org/https://doi.org/10.2903/j.efsa.2015.4102

European Food Safety Authority. (2017). EFSA explains risk assessment : caffeine. European
Food Safety Authority. https://doi.org/doi/10.2805/618813

Fitt, E., Pell, D., & Cole, D. (2013). Assessing caffeine intake in the United Kingdom diet. Food
Chemistry, 140(3), 421–426.
https://doi.org/https://doi.org/10.1016/j.foodchem.2012.07.092

Flaticon. (n.d.). Free icons designed by Freepik. Retrieved May 2, 2022, from
https://www.flaticon.com/authors/freepik

franklynw. (n.d.). GitHub - franklynw/HalfASheet: A SwiftUI pseudo-modal partial screen
sheet, with height customisation. GitHub Repository. Retrieved May 3, 2022, from
https://github.com/franklynw/HalfASheet

Google. (n.d.). Cloud Firestore | Firebase Documentation. Retrieved May 6, 2022, from
https://developer.apple.com/documentation/cloudkit

Grønli, T., Hansen, J., Ghinea, G., & Younas, M. (2014). Mobile Application Platform
Heterogeneity: Android vs Windows Phone vs iOS vs Firefox OS. 2014 IEEE 28th
International Conference on Advanced Information Networking and Applications, 635–
641. https://doi.org/10.1109/AINA.2014.78

Hamed, A. M. M., & Abushama, H. (2013). Popular agile approaches in software development:
Review and analysis. In 2013 INTERNATIONAL CONFERENCE ON COMPUTING,
ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE), Computing, Electrical and
Electronics Engineering (ICCEEE), 2013 International Conference on (pp. 160–166). IEEE.
https://doi.org/10.1109/ICCEEE.2013.6633925

Hatton, S. (2008). Choosing the Right Prioritisation Method. In 19th Australian Conference on
Software Engineering (aswec 2008), Software Engineering, 2008. ASWEC 2008. 19th
Australian Conference on (pp. 517–526). IEEE.
https://doi.org/10.1109/ASWEC.2008.4483241

 62

HiCoffee. (n.d.). HiCoffee - Caffeine Tracker. Retrieved February 7, 2022, from
https://apps.apple.com/us/app/hicoffee-caffeine-
tracker/id1507361706#?platform=iphone

JetBrains. (n.d.). IntelliJ IDEA: The Capable & Ergonomic Java IDE by JetBrains. Retrieved May
6, 2022, from https://www.jetbrains.com/idea/

joe-scotto. (n.d.). GitHub - joe-scotto/TextFieldStepper: A SwiftUI component to make
inputting numbers easier than the native stepper component. GitHub Repository.
Retrieved May 3, 2022, from https://github.com/joe-scotto/TextFieldStepper

Lamhaddab, K., Lachgar, M., & Elbaamrani, K. (2019). Porting Mobile Apps from iOS to
Android: A Practical Experience. Mobile Information Systems, 2019, 4324871.
https://doi.org/10.1155/2019/4324871

Lindstrom, L., & Jeffries, R. (2004). Extreme Programming and Agile Software Development
Methodologies. Information Systems Management, 21(3), 41–52.
https://doi.org/10.1201/1078/44432.21.3.20040601/82476.7

LinkedIn Learning. (n.d.). LinkedIn Learning with Lynda: Online Training Courses for Creative,
Technology, Business Skills. Retrieved May 2, 2022, from
https://www.linkedin.com/learning/

mecid. (n.d.). GitHub - mecid/SwiftUICharts: A simple line and bar charting library that
supports accessibility written using SwiftUI. GitHub Repository. Retrieved May 3, 2022,
from https://github.com/mecid/SwiftUICharts

Nehlig, A. (1999). Are we dependent upon coffee and caffeine? A review on human and
animal data. Neuroscience & Biobehavioral Reviews, 23(4), 563–576.
https://doi.org/https://doi.org/10.1016/S0149-7634(98)00050-5

Public Health England, & F. S. A. (2014, May 14). Quantity of soft drinks consumed per day in
the United Kingdom (UK) from 2008 to 2012, by age (in grams). Statista.
https://www.statista.com/statistics/437106/quantity-soft-drinks-consumed-in-the-
united-kingdom/

React Native · Learn once, write anywhere. (n.d.). Retrieved November 1, 2021, from
https://reactnative.dev

Shah, K., Sinha, H., & Mishra, P. (2019). Analysis of Cross-Platform Mobile App Development
Tools. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT),
Convergence in Technology (I2CT), 2019 IEEE 5th International Conference for (pp. 1–7).
IEEE. https://doi.org/10.1109/I2CT45611.2019.9033872

Shaydulin, R., & Sybrandt, J. (2017). To Agile, or not to Agile: A Comparison of Software
Development Methodologies.
https://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1704.07
469&site=eds-live

StatCounter. (2021a, June 29). Market share held by mobile operating systems in the United
Kingdom (UK) from December 2011 to December 2020. Statista.
https://www.statista.com/statistics/262179/market-share-held-by-mobile-operating-
systems-in-the-united-kingdom/

StatCounter. (2021b, June 29). Mobile operating systems’ market share worldwide from
January 2012 to June 2021. Statista. https://www.statista.com/statistics/272698/global-
market-share-held-by-mobile-operating-systems-since-2009/

Statista. (2021, May 21). Forecast of the number of smartphone users in the United Kingdom
from 2010 to 2025 (in millions). Statista.

 63

https://www.statista.com/forecasts/1143841/smartphone-users-in-the-united-
kingdom

Stine, M. M. (1), O’Connor, R. J. (1), Klein 3), L. C. (1, Yatko, B. R. (2), & Grunberg, N. E. (2
). (n.d.). Evidence for a relationship between daily caffeine consumption and accuracy of
time estimation. Human Psychopharmacology, 17(7), 361–367.
https://doi.org/10.1002/hup.423

WaterMinder. (n.d.). WaterMinder® - track your daily water intake, hydrate, feel better!
Retrieved February 7, 2022, from https://waterminder.com

Appendix A: PID

6FKRRO�RI�&RPSXWLQJ
3URMHFW�,QLWLDWLRQ�'RFXPHQW

5\DQ�%XVK
0\&DIIHLQH��&DIIHLQH�7UDFNHU�IRU�L26
(QJLQHHULQJ�3URMHFW

Y��������

3URMHFW�,QLWLDWLRQ�'RFXPHQW 5\DQ�%XVK

�� %DVLF�GHWDLOV
6WXGHQW�QDPH� 5\DQ�%XVK

'UDIW�SURMHFW�WLWOH� 0\&DIIHLQH��&DIIHLQH�7UDFNHU�IRU�L26

&RXUVH� %6F�&RPSXWHU�6FLHQFH

3URMHFW�VXSHUYLVRU� 6WHYHQ�2VVRQW

&OLHQW�RUJDQLVDWLRQ� 1�$

&OLHQW�FRQWDFW�QDPH� 1�$

�� 'HJUHH�VXLWDELOLW\
7KLV SURMHFW VDWLVILHV WKH FULWHULD IRU WKH %6F &RPSXWHU 6FLHQFH FRXUVH E\ PHHWLQJ VHYHUDO
RI WKH OHDUQLQJ REMHFWV RQ PRGXOHV WDNHQ WKURXJKRXW WKH GHJUHH� ,W EXLOGV RQ NQRZOHGJH
OHDUQHG IURP SURJUDPPLQJ PRGXOHV LQ WKH ILUVW \HDU� VXFK DV ,QWURGXFWLRQ WR 3URJUDPPLQJ�
ZKHUH ERWK 3\WKRQ DQG -DYD ZHUH OHDUQW� DQG VRIWZDUH HQJLQHHULQJ PRGXOHV LQ WKH VHFRQG
\HDU� ZKHUH H[SHULHQFH ZDV JDLQHG IURP OHDUQLQJ DERXW WKH VRIWZDUH GHYHORSPHQW F\FOH
DQG SXWWLQJ WKDW NQRZOHGJH LQWR XVH E\ FUHDWLQJ D IXOO�VFDOH DSSOLFDWLRQ� ,W DOVR LQYROYHV
GHYHORSLQJ�DQ�DSSOLFDWLRQ�IRU�D�UHDO�OLIH�SUREOHP�

�� 2XWOLQH�RI�WKH�SURMHFW�HQYLURQPHQW�DQG�SUREOHP�WR�EH�VROYHG
7KH�SUREOHP�P\�SURMHFW�ZLOO�DLP�WR�VROYH�LV�KHOSLQJ�SHRSOH�WUDFN�DQG�XQGHUVWDQG�WKHLU
FDIIHLQH�FRQVXPSWLRQ��7KHUH�DUH�FXUUHQWO\�DSSOLFDWLRQV�GHGLFDWHG�WR�WUDFNLQJ�WKH
FRQVXPSWLRQ�RI�FDIIHLQH��KRZHYHU�WKHVH�RIWHQ�ODFN�GHSWK�DQG�DUH�KDUG�WR�XQGHUVWDQG��8VHUV
ZRXOG�EHQHILW�IURP�DQ�DSSOLFDWLRQ�WKDW�PDNHV�LW�HDV\�WR�WUDFN�WKHLU�XVDJH�

7KH�WDUJHW�DXGLHQFH�IRU�WKLV�DSSOLFDWLRQ�LV�SHRSOH�ZKR�FXUUHQWO\��RU�ZLVK�WR��PRQLWRU�WKHLU
FDIIHLQH�LQWDNH�HLWKHU�WR�DLG�LQ�UHPRYLQJ�DQ�DGGLFWLRQ�RU�WR�EHWWHU�XQGHUVWDQG�WKHLU
FRQVXPSWLRQ��&DIIHLQH�DGGLFWLRQ�FDQ�FDXVH�DGYHUVH�HIIHFWV�RQ�SHRSOH
V�HYHU\GD\�OLYHV�

�� 3URMHFW�DLP�DQG�REMHFWLYHV
7KH�RYHUDOO�DLP�RI�WKLV�SURMHFW�LV�WR�SURGXFH�DQ�DSSOLFDWLRQ�WKDW�ZLOO�DOORZ�XVHUV�WR�NHHS�WUDFN
RI�WKHLU�FDIIHLQH�LQWDNH�LQ�D�TXLFN�DQG�HDV\�PDQQHU��,W�ZLOO�DOVR�DLP�WR�DVVLVW�XVHUV�PRQLWRU
DQG�UHGXFH�WKHLU�FDIIHLQH�LQWDNH�RYHU�WLPH�

$LPV�RI�WKH�SURMHFW�
Ɣ $OORZ�XVHUV�WR�PDQXDOO\�LQSXW�D�TXDQWLW\�RI�FDIIHLQH��PHDVXUHG�LQ�PLOOLJUDPV�>PJ@��
Ɣ $OORZ�XVHUV�WR�VHOHFW�SUHGHILQHG�GULQNV��VXFK�DV�WKRVH�RIIHUHG�DW�FRIIHH�VKRSV�RU

EURXJKW�IURP�VXSHUPDUNHWV�
Ɣ $OORZ�XVHUV�WR�WUDFN�WKHLU�FDIIHLQH�OHYHOV�WKURXJKRXW�WKH�GD\�DQG�VHH�SUHGLFWLRQV�RQ

KRZ�WKHLU�FDIIHLQH�OHYHOV�ZLOO�EH�IRU�WKH�IXWXUH��VXFK�DV�EHGWLPH�

3DJH� �

3URMHFW�,QLWLDWLRQ�'RFXPHQW 5\DQ�%XVK

6WUHWFK�DLPV�RI�WKH�SURMHFW�
Ɣ $OORZ�XVHUV�WR�V\QFKURQLVH�WKHLU�FDIIHLQH�LQWDNH�WR�$SSOH�+HDOWK�
Ɣ $OORZ�XVHUV�WR�GLVSOD\�ZLGJHWV�RQ�WKHLU�KRPHVFUHHQ�WR�HDVLO\�YLHZ�LQIRUPDWLRQ�
Ɣ $OORZ�WKH�DSSOLFDWLRQ�WR�EH�RSHQHG�RQ�$SSOH�L3DG�DQG�:DWFK�GHYLFHV�
Ɣ $OORZ�WKH�XVHU�WR�V\QFKURQLVH�KHDUW�UHODWHG�GDWD��WR�VHH�WKH�HIIHFWV�FDIIHLQH�KDV�RQ

KHDUW�UDWH�

�� 3URMHFW�GHOLYHUDEOHV
0\&DIIHLQH�ZLOO�EH�GHOLYHUHG�DV�DQ�L26�DSSOLFDWLRQ�YLD�WKH�$SSOH�$SS�6WRUH��WKHUHIRUH��LW�ZLOO
EH�DFFHVVLEOH�E\�DQ\RQH�ZKR�ZLVKHV�WR�XVH�WKH�DSSOLFDWLRQ�IURP�WKHLU�RZQ�GHYLFHV�
SURYLGLQJ�WKH\�RZQ�RU�KDYH�DFFHVV�WR�DQ�$SSOH�PRELOH�GHYLFH��,W�ZLOO�XVH�RQOLQH
V\QFKURQLVDWLRQ�IHDWXUHV��VXFK�DV�FORXG�VDYLQJ��EXW�ZLOO�QRW�EH�GHSHQGHQW�RQ�LW��VR�WKH�XVHU
FDQ�VWLOO�XVH�WKH�DSSOLFDWLRQ�ZLWKRXW�LQWHUQHW�FRQQHFWLRQ�

$OWHUQDWLYHO\��GXH�WR�WKH�QHHG�IRU�DSSURYDO�WR�SXEOLVK�WKH�DSSOLFDWLRQ�WR�WKH�$SS�6WRUH��LI
DSSURYDO�LV�QRW�UHFHLYHG�LQ�WLPH�IRU�WKH�ILQDO�GHPRQVWUDWLRQ��LW�ZLOO�EH�DFFHVVLEOH�YLD�WKH
$SSOH�7HVW)OLJKW�SODWIRUP�

$�ILQDO�UHSRUW�ZLOO�EH�ZULWWHQ�GHVFULELQJ�WKH�SURFHVVHV�EHKLQG�WKH�FUHDWLRQ�RI�WKH�SURMHFW�
LQFOXGLQJ�WKH�VWDJHV�RI�GHYHORSPHQW�WKURXJK�WKH�VRIWZDUH�OLIH�F\FOH��,Q�DGGLWLRQ�WR�WKLV��D
VHFWLRQ�RI�WKH�DSS�ZLOO�FRQWDLQ�GHWDLOV�RQ�KRZ�WR�XVH�WKH�V\VWHP��LQFOXGLQJ�D�IUHTXHQWO\
DVNHG�TXHVWLRQV�VHFWLRQ�DQG�DQ�LQWURGXFWLRQ�SDJH�IRU�VHWWLQJ�XS�WKH�DSSOLFDWLRQ�

�� 3URMHFW�FRQVWUDLQWV
0\&DIIHLQH�ZLOO�EH�EXLOW�XVLQJ�WKH�6ZLIW�SURJUDPPLQJ�ODQJXDJH�XVLQJ�;&RGH��7KH
SURJUDPPLQJ�ODQJXDJH�LV�FRQVWDQWO\�XSGDWHG�DV�QHZ�WHFKQRORJLHV�DULVH��KRZHYHU��LW�LV
XQOLNHO\�IRU�DQ\�XSGDWH�WR�KDSSHQ�GXULQJ�WKH�GHYHORSPHQW�RI�WKLV�SURMHFW�

7KH�ELJJHVW�FRQVWUDLQW�LV�WLPH��7KH�DSSOLFDWLRQ�PXVW�EH�FRPSOHWHG�E\�HDUO\�0D\�LQ�RUGHU�WR
GHPRQVWUDWH�WKH�DSSOLFDWLRQ��$�SURMHFW�SODQ�ZLOO�EH�FRPSOHWHG�WR�HQVXUH�SURJUHVV�GRHV�QRW
IDOO�EHKLQG�VFKHGXOH�

7KHUH�DUH�QR�IXUWKHU�FRQVWUDLQWV�IRU�WKLV�SURMHFW�DW�WKLV�WLPH��KRZHYHU��WKLV�PD\�FKDQJH�LQ�WKH
IXWXUH�DV�WKH�SURMHFW�SURJUHVVHV�

�� 3URMHFW�DSSURDFK
7KH�DSSOLFDWLRQ�ZLOO�EH�GHYHORSHG�XVLQJ�DQ�DJLOH�PHWKRGRORJ\��WKLV�ZLOO�EH�UXQQLQJ�WKH�HQWLUH
VSDQ�RI�WKH�SURMHFW��7KH�GRFXPHQWDWLRQ�SHULRG�IRU�WKLV�SURMHFW��ZKLFK�SULPDULO\�FRQVLVWV�RI
WKH�ZULWH�XS�IRU�WKH�ILQDO�UHSRUW��ZLOO�EH�FRQGXFWHG�WKURXJKRXW�WKH�HQWLUH�OHQJWK�RI�WKH�SURMHFW�
WR�HQVXUH�HQRXJK�WLPH�LV�JLYHQ�WR�WKH�UHSRUW�

3DJH� �

3URMHFW�,QLWLDWLRQ�'RFXPHQW 5\DQ�%XVK

7KH�DSSOLFDWLRQ�ZLOO�EH�GHYHORSHG�XVLQJ�WKH�6ZLIW�SURJUDPPLQJ�ODQJXDJH��6RPH�SUHYLRXV
NQRZOHGJH�RI�WKLV�ODQJXDJH�LV�DOUHDG\�NQRZQ��KRZHYHU��PRUH�UHVHDUFK�ZLOO�EH�UHTXLUHG�WR
HQKDQFH�XQGHUVWDQGLQJ�RI�WKH�ODQJXDJH�IXUWKHU��)XUWKHUPRUH��WKH�DSSOLFDWLRQ�ZLOO�PDNH�XVH
RI�YDULRXV�6'.V�DYDLODEOH�IURP�$SSOH��VXFK�DV�+HDOWK.LW�DQG�6ZLIW8,�

�� /LWHUDWXUH�UHYLHZ�SODQ
8VLQJ�XQLYHUVLW\�OLEUDU\�UHVRXUFHV�DQG�RWKHU�DFDGHPLF�MRXUQDO�UHVRXUFHV��,�ZLOO�UHVHDUFK�KRZ
WKH�FRQVXPSWLRQ�RI�FDIIHLQH�FDQ�DIIHFW�VRPHRQH
V�GDLO\�OLIH��DQG�KRZ�WKHVH�HIIHFWV�FDQ�EH
UHGXFHG��([LVWLQJ�DSSOLFDWLRQV�ZLOO�DOVR�EH�UHVHDUFKHG�WR�VHH�ZKDW�IHDWXUHV�DUH�JHQHUDOO\
LQFOXGHG�DQG�GHWHUPLQH�ZKDW�NLQG�RI�IHDWXUHV�ZRXOG�EH�QHFHVVDU\�WKDW�WKH�H[LVWLQJ
DSSOLFDWLRQV�DUH�FXUUHQWO\�ODFNLQJ�

7KH�UHVHDUFK�IRU�WKLV�SURMHFW�ZLOO�LQYHVWLJDWH�H[LVWLQJ�V\VWHPV�IRU�WUDFNLQJ�OHYHOV�RI�FDIIHLQH
DQG�KRZ�HIIHFWLYH�WKH\�DUH�DW�HQJDJLQJ�XVHUV�DQG�KHOSLQJ�SRWHQWLDO�DGGLFWLRQ��5HVHDUFK�ZLOO
DOVR�EH�FRQGXFWHG�RQ�KRZ�FDIIHLQH�FDQ�DIIHFW�VRPHRQH�

7KH�H[LVWLQJ�V\VWHPV�WKDW�ZLOO�EH�UHVHDUFKHG�DUH�
Ɣ :DWHU0LQGHU�>ZDWHUPLQGHU�FRP@���WUDFN�\RXU�GDLO\�ZDWHU�LQWDNH��K\GUDWH��IHHO

EHWWHU�
Ɣ +L&RIIHH

>KWWSV���DSSV�DSSOH�FRP�XV�DSS�KLFRIIHH�FDIIHLQH�WUDFNHU�LG����������@�±
&DIIHLQH�7UDFNHU

7KH�H[LVWLQJ�UHSRUWV�LQLWLDOO\�XVHG�IRU�UHVHDUFK�DUH�
Ɣ %DH��(��-���.LP��(��%���&KRL��%��5���:RQ��6��+���.LP��-��+���.LP��6��0���<RR��+�

-���%DH��6��0���	�/LP��0��+����������7KH�5HODWLRQVKLSV�EHWZHHQ�$GGLFWLRQ�WR
+LJKO\�&DIIHLQDWHG�'ULQNV��%XUQRXW��DQG�$WWHQWLRQ�'HILFLW��+\SHUDFWLYLW\
'LVRUGHU��6RD��FK
RQJVRQ\RQ�FKRQJVLQ�XLKDN� �-RXUQDO�RI�FKLOG�	�DGROHVFHQW
SV\FKLDWU\������������±�����KWWSV���GRL�RUJ���������MNDFDS�������

��)DFLOLWLHV�DQG�UHVRXUFHV
7KH�GHYHORSPHQW�RI�WKLV�DSSOLFDWLRQ�ZLOO�UHTXLUH�DQ�$SSOH�'HYHORSHU�DFFRXQW��SULFHG�DW����
D�\HDU��ZKLFK�LV�DOUHDG\�RZQHG��7KLV�DOORZV�IRU�WKH�DSSOLFDWLRQ�WR�EH�SXEOLVKHG�WR�WKH�$SSOH
$SS�6WRUH�VKRXOG�WKH�DSSOLFDWLRQ�UHDFK�DOO�LWV�DLPV��,Q�DGGLWLRQ�WR�WKLV��DQ�$SSOH�FRPSXWHU
ZLOO�EH�UHTXLUHG�WR�EH�DEOH�WR�GHYHORS�WKH�DSSOLFDWLRQ��DV�ZHOO�DV�$SSOH�PRELOH�GHYLFHV��VXFK
DV�DQ�L3KRQH��WR�HIIHFWLYHO\�WHVW�WKH�DSSOLFDWLRQ��;FRGH�FRPHV�ZLWK�YDULRXV�VLPXODWRUV��VR
WKH�DSSOLFDWLRQ�FDQ�EH�HIIHFWLYHO\�VLPXODWHG�RQ�YDULRXV�GHYLFHV��ZLWKRXW�WKH�QHHG�WR
SXUFKDVH�VHYHUDO�

1R�RWKHU�IDFLOLWLHV�RU�UHVRXUFHV�ZLOO�EH�UHTXLUHG�

3DJH� �

3URMHFW�,QLWLDWLRQ�'RFXPHQW 5\DQ�%XVK

��� /RJ�RI�ULVNV
7KH WDEOH EHORZ VKRZV D UDQJH RI ULVNV WKDW FRXOG RFFXU GXULQJ WKH SURMHFW� 7KH ULVNV ZLOO EH
UH�HYDOXDWHG GXULQJ HDFK GHYHORSPHQW VWDJH RI WKH SURMHFW� DQG LI DQ\ SUREOHPV DULVH WKHQ
WKH WDEOH ZLOO EH XSGDWHG� 7KLV ZLOO HQVXUH WKDW WKH SURMHFW VWD\V RQ WDUJHW ZLWK GHDGOLQHV�
DQG�DQ\�FRQFHUQV�UHJDUGLQJ�ULVNV�DUH�DGGUHVVHG�EHIRUH�WKH\�EHFRPH�PRUH�VHYHUH�

'HVFULSWLRQ ,PSDFW /LNHOLKRRG 0LWLJDWLRQ)LUVW�LQGLFDWRU

&29,'���
RXWEUHDN�IRUFHV
FORVXUH�RI�WKH
FDPSXV

0HGLXP 9HU\�+LJK (QVXUH�WKDW�DOO�WDVNV
FDQ�EH�FRPSOHWHG�LQ
D�KRPH�ZRUNLQJ
HQYLURQPHQW�

8QLYHUVLW\�LQIRUPV
WKDW�ODE�FORVXUH�LV
OLNHO\

/DFN�RI
SURGXFWLYLW\�GXULQJ
LQLWLDO�SURMHFW
VWDJHV

+LJK /RZ &UHDWLQJ�DQG
VWLFNLQJ�WR
PLOHVWRQHV�IRU�HDFK
VWDJH�WR�HQVXUH�WKH\
DUH�FRPSOHWHG�RQ
WDUJHW�

,I�D�PLOHVWRQH�LV
QRW�PHW�ZLWKRXW
DQ\�YDOLG�UHDVRQ�

&29,'���
RXWEUHDN�ZLWKLQ�WKH
KRXVHKROG

+LJK +LJK 0DLQWDLQ�VWULFW�VRFLDO
GLVWDQFLQJ��SHUVRQDO
K\JLHQH�DQG
FOHDQLQJ�VWDQGDUGV�

0\VHOI�RU�D
PHPEHU�RI�WKH
KRXVHKROG
GHYHORSHG
&29,'���
V\PSWRPV�

,QDGHTXDWH�ULVN
PDQDJHPHQW

+LJK /RZ 5HYLHZ�WKH�ORJ�RI
ULVNV�UHJXODUO\�WR
HQVXUH�LW�LV�XSGDWHG
ZLWK�QHZ�ULVNV�

1HZ�ULVNV�DUH
IRXQG�ODWHU�LQ�WKH
GHYHORSPHQW
SURFHVV�

'DWD�ORVV 9HU\�+LJK 0HGLXP 5HJXODUO\�EDFN�XS
ZRUN�WR�FORXG�DQG
*LW+XE�

+DUGZDUH�DQG�RU
VRIWZDUH�SUREOHPV

'HDGOLQHV�RU�RWKHU
PRGXOHV

+LJK 0HGLXP &UHDWH�DQG�IROORZ�D
SURMHFW�SODQ
GHGLFDWLQJ�FHUWDLQ
KRXUV�RI�WKH�ZHHN�WR
WKH�SURMHFW�

)RFXVLQJ�RQ�RWKHU
PRGXOHV�DQG
IDOOLQJ�EHKLQG�RQ
SURMHFW�SODQ

��� 3URMHFW�SODQ
7KH GHYHORSPHQW RI 0\&DIIHLQH ZLOO EH EURNHQ GRZQ LQWR VHYHUDO GLIIHUHQW VHFWLRQV�
IROORZLQJ WKH ZDWHUIDOO PHWKRGRORJ\� 7KLV ZLOO DOORZ IRU DQ DSSURSULDWH DPRXQW RI WLPH IRU
HDFK VWDJH GXULQJ WKH DFDGHPLF IXOO \HDU� DV WLPH LV D PDMRU FRQVWUDLQW� 7KH GLIIHUHQW VWDJHV
DUH RXWOLQHG EHORZ� $ *DQWW FKDUW IROORZV WKH OLVW ZKLFK VKRZV ZKHQ HDFK VWDJH ZLOO WDNH

3DJH� �

3URMHFW�,QLWLDWLRQ�'RFXPHQW 5\DQ�%XVK

SODFH� DQG D URXJK GHDGOLQH IRU HDFK VWDJH� 7KLV SURMHFW SODQ ZLOO EH XSGDWHG WKURXJKRXW WKH
\HDU�WR�DOORZ�IRU�SUREOHPV�WKDW�FRXOG�DULVH�

/LWHUDWXUH�5HYLHZ
7KH OLWHUDWXUH UHYLHZ ZLOO LQYHVWLJDWH H[LVWLQJ V\VWHPV IRU FDIIHLQH WUDFNLQJ� ZKLFK DUH VLPLODU
WR�WKH�V\VWHP�EHLQJ�GHYHORSHG�

6SHFLILFDWLRQ
7KLV VWDJH ZLOO LQYROYH WKH FUHDWLRQ RI V\VWHP UHTXLUHPHQWV WKDW WKH SURMHFW ZLOO DLP WR
DFKLHYH� 5HTXLUHPHQWV ZLOO EH JDWKHUHG E\ UHVHDUFKLQJ H[LVWLQJ DQG SUHYLRXV V\VWHPV DQG
SULRULWLVLQJ IHDWXUHV LQ RUGHU RI LPSRUWDQFH� DV ZHOO DV D TXHVWLRQQDLUH ZKLFK ZLOO EH VHQW WR
SRWHQWLDO�XVHUV�

'HVLJQ
7KH GHVLJQ VWDJH ZLOO LQFOXGH DOO WKH PDLQ V\VWHPV ZLWKLQ WKH SURMHFW� LQFOXGLQJ WKH PDLQ
DUHDV RI WKH XVHU LQWHUIDFH WKDW WKH HQG�XVHU ZLOO LQWHUDFW ZLWK� DV ZHOO DV DOO GDWD VWRUDJH
GHVLJQV� 'HVLJQV PD\ EH FKDQJHG ODWHU LQ WKH GHYHORSPHQW VWDJH LI UHTXLUHG� $ FRXSOH RI
GHVLJQV ZLOO EH PDGH IRU HDFK IURQW�HQG IHDWXUH� WR DQDO\VH EHVW ZKLFK GHVLJQ ZLOO ZRUN IURP
D�XVHU�SRLQW�RI�YLHZ�

,PSOHPHQWDWLRQ
7KLV VWDJH ZLOO LQYROYH WKH PDLQ GHYHORSPHQW RI WKH SODWIRUP� 'XULQJ WKLV VWDJH� HDFK
IHDWXUH ZLOO EH VSOLW XS LQWR PLQRU PLOHVWRQHV WR PHHW� WR HQVXUH WKDW WKH SURMHFW FDQ EH
FRPSOHWHG LQ WLPH� (DFK PLOHVWRQH ZLOO EH WHVWHG RQFH FRPSOHWHG WR HQVXUH LW ZRUNV EHIRUH
VWDUWLQJ�WKH�QH[W�PLOHVWRQH�

7HVWLQJ
7KH WHVWLQJ VWDJH ZLOO LQFOXGH FORVHG WHVWV RI WKH VRIWZDUH ZKLFK ZLOO FRQVLVW RI D VHULHV RI
VSHFLILHG DFWLRQV WKDW XVHUV ZLOO EH SHUIRUPLQJ� $OSKD DQG %HWD VRIWZDUH ZLOO EH UHOHDVHG WR
VPDOO QXPEHUV RI XVHUV WR DOORZ IRU PRUH LQWHQVH WHVWLQJ� $OO SUREOHPV WKDW DULVH GXULQJ
WHVWLQJ ZLOO EH GRFXPHQWHG ZLWK DQ\ LVVXHV IRXQG EHLQJ FRUUHFWHG EHIRUH WKH SODWIRUP LV
FRPSOHWHG� 7KH WHVWLQJ SKDVH ZLOO EH FRQGXFWHG WRZDUGV WKH HQG RI WKH LPSOHPHQWDWLRQ
SKDVH�WR�HQVXUH�WLPH�LV�DOORFDWHG�WR�IL[�DQ\�LVVXHV�

'RFXPHQWDWLRQ
7KH GRFXPHQWDWLRQ VWDJH RI WKH SURMHFW ZLOO EH FRPSOHWHG RQFH WKH LPSOHPHQWDWLRQ KDV
FRPSOHWHG� 7KLV ZLOO FRYHU KRZ ZHOO WKH SURMHFW KDV PHW WKH V\VWHP DQG XVHU UHTXLUHPHQWV
WKDW ZHUH LQLWLDOO\ GHWDLOHG� ,W ZLOO DOVR FRYHU KRZ WKH LPSOHPHQWDWLRQ DQG WHVWLQJ VWDJH KDV
DIIHFWHG�DQ\�FKDQJHV�WKDW�ZHUH�PDGH�WR�WKH�SURMHFW�

7KH ILQDO GRFXPHQWDWLRQ ZLOO EH SURYLGHG YLD D IUHTXHQWO\ DVNHG TXHVWLRQ �)$4� DQG WXWRULDOV
VHFWLRQ�ZLWKLQ�WKH�DSSOLFDWLRQ�

3DJH� �

3URMHFW�,QLWLDWLRQ�'RFXPHQW 5\DQ�%XVK

:ULWH�8S
'XULQJ WKH HQWLUH SURMHFW� WKH ILQDO UHSRUW ZLOO EH FUHDWHG DQG PDLQWDLQHG WR GRFXPHQW WKH
HQWLUH GHYHORSPHQW SURFHVV� 7KHUH ZLOO EH VPDOO EUHDNV IURP WKH ZULWH XS WR HQVXUH WLPH LV
VSHQW�RQ�WKH�LPSOHPHQWDWLRQ�VWDJH�

��� /HJDO��HWKLFDO��SURIHVVLRQDO��VRFLDO�LVVXHV��PDQGDWRU\�
$Q�HWKLFV�IRUP�ZLOO�EH�FRPSOHWHG��ZKLFK�ZLOO�EH�UHYLHZHG�E\�P\�VXSHUYLVRU��WR�HQVXUH�WKDW
WKHUH�DUH�QR�HWKLFDO�EUHDFKHV�LQ�WKLV�SURMHFW��7KH�GDWDEDVH�XVHG�WR�VWRUH�GDWD�ZLOO�EH
SURWHFWHG�DQG�HYHU\�SUHFDXWLRQ�ZLOO�EH�WDNHQ�WR�HQVXUH�LWV�VHFXULW\�LV�PDLQWDLQHG��,Q�WKH
HYHQW�WKHUH�LV�D�FRPSURPLVH�RI�GDWD��WKHUH�ZLOO�EH�QR�OLQN�EHWZHHQ�WKH�GDWD�VWRUHG�DQG�WKH
LQGLYLGXDO�LW�EHORQJV�WR�

7KH�DSSOLFDWLRQ�ZLOO�DOVR�EH�GHYHORSHG�LQ�DFFRUGDQFH�ZLWK�UHJXODWLRQV�IURP�WKH�8QLWHG
.LQJGRP��VXFK�DV�WKH�'DWD�3URWHFWLRQ�$FW�DQG�WKH�*HQHUDO�'DWD�3URWHFWLRQ�5HJXODWLRQ�
7KLV�ZLOO�LQYROYH�PDNLQJ�VXUH�WKDW�VHQVLWLYH�GDWD��VXFK�DV�SHUVRQDO�LQIRUPDWLRQ��DUH�QRW
PLVKDQGOHG�DQG�VWRUHG�LQ�D�VDIH�ZD\��,�ZLOO�DOVR�DYRLG�WKH�XVH�RI�FRS\ULJKW�RU�SDWHQWHG
SURGXFWV�LQ�WKH�SURMHFW��DV�,�ZLOO�EH�SURGXFLQJ�WKH�ZRUN�RQ�P\�RZQ�DQG�ZLOO�RQO\�XVH
SURGXFWV�ZKLFK�DUH�FRS\ULJKW�DQG�OLFHQFH�IUHH�

3DJH� �

Appendix B: Ethics Review

&HUWLILFDWH�RI�(WKLFV�5HYLHZ
3URMHFW�WLWOH� 0\&DIIHLQH��&DIIHLQH�7UDFNHU�IRU�L26

1DPH� 5\DQ�%XVK 8VHU�,'� ������ $SSOLFDWLRQ�GDWH� ����������
��������

(5�1XPEHU� 7(7+,&������������

<RX�PXVW�GRZQORDG�\RXU�UHIHUUDO�FHUWLILFDWH��SULQW�D�FRS\�DQG�NHHS�LW�DV�D�UHFRUG�RI�WKLV�UHYLHZ�

7KH�)(&�UHSUHVHQWDWLYH�V��IRU�WKH 6FKRRO�RI�&RPSXWLQJ LV�DUH 3KLOLS�6FRWW� 0DWWKHZ�'HQQLV

,W�LV�\RXU�UHVSRQVLELOLW\�WR�IROORZ�WKH�8QLYHUVLW\�&RGH�RI�3UDFWLFH�RQ�(WKLFDO�6WDQGDUGV�DQG�DQ\�'HSDUWPHQW�6FKRRO
RU�SURIHVVLRQDO�JXLGHOLQHV�LQ�WKH�FRQGXFW�RI�\RXU�VWXG\�LQFOXGLQJ�UHOHYDQW�JXLGHOLQHV�UHJDUGLQJ�KHDOWK�DQG�VDIHW\
RI�UHVHDUFKHUV�LQFOXGLQJ�WKH�IROORZLQJ�

Ɣ 8QLYHUVLW\�3ROLF\
Ɣ 6DIHW\�RQ�*HRORJLFDO�)LHOGZRUN

,W�LV�DOVR�\RXU�UHVSRQVLELOLW\�WR�IROORZ�8QLYHUVLW\�JXLGDQFH�RQ�'DWD�3URWHFWLRQ�3ROLF\�
Ɣ *HQHUDO�JXLGDQFH�IRU�DOO�GDWD�SURWHFWLRQ�LVVXHV
Ɣ 8QLYHUVLW\�'DWD�3URWHFWLRQ�3ROLF\

:KLFK�VFKRRO�GHSDUWPHQW�GR�\RX�EHORQJ�WR"� 6FKRRO RI�&RPSXWLQJ
:KDW�LV�\RXU�SULPDU\�UROH�DW�WKH�8QLYHUVLW\"� 8QGHUJUDGXDWH 6WXGHQW
:KDW�LV�WKH�QDPH�RI�WKH�PHPEHU�RI�VWDII�ZKR�LV�UHVSRQVLEOH�IRU�VXSHUYLVLQJ�\RXU�SURMHFW"� 6WHYHQ�2VVRQW
,V�WKH�VWXG\�OLNHO\�WR�LQYROYH�KXPDQ�VXEMHFWV��REVHUYDWLRQ��RU�SDUWLFLSDQWV"��<HV
:LOO�SHRSOHVC�LQYROYHPHQW�EH�OLPLWHG�WR�MXVW�UHVSRQGLQJ�WR�TXHVWLRQQDLUHV�RU�VXUYH\V��RU�SURYLGLQJ�VWUXFWXUHG
IHHGEDFN�GXULQJ�VRIWZDUH�SURWRW\SLQJ"��<HV
:LOO�WKH�VWXG\�LQYROYH�1DWLRQDO�+HDOWK�6HUYLFH�SDWLHQWV�RU�VWDII"��1R
'R�KXPDQ�SDUWLFLSDQWV�VXEMHFWV�WDNH�SDUW�LQ�VWXGLHV�ZLWKRXW�WKHLU�NQRZOHGJH�FRQVHQW�DW�WKH�WLPH��RU�ZLOO�GHFHSWLRQ
RI�DQ\�VRUW�EH�LQYROYHG"��H�J��FRYHUW�REVHUYDWLRQ�RI�SHRSOH��HVSHFLDOO\�LI�LQ�D�QRQ�SXEOLF�SODFH���1R
:LOO�\RX�FROOHFW�RU�DQDO\VH�SHUVRQDOO\�LGHQWLILDEOH�LQIRUPDWLRQ�DERXW�DQ\RQH�RU�PRQLWRU�WKHLU�FRPPXQLFDWLRQV�RU
RQ�OLQH�DFWLYLWLHV�ZLWKRXW�WKHLU�H[SOLFLW�FRQVHQW"��1R
'RHV�WKH�VWXG\�LQYROYH�SDUWLFLSDQWV�ZKR�DUH�XQDEOH�WR�JLYH�LQIRUPHG�FRQVHQW�RU�LQ�DUH�LQ�D�GHSHQGHQW�SRVLWLRQ
�H�J��FKLOGUHQ��SHRSOH�ZLWK�OHDUQLQJ�GLVDELOLWLHV��XQFRQVFLRXV�SDWLHQWV��3RUWVPRXWK�8QLYHUVLW\�VWXGHQWV�"��1R
$UH�GUXJV��SODFHERV�RU�RWKHU�VXEVWDQFHV��H�J��IRRG�VXEVWDQFHV��YLWDPLQV��WR�EH�DGPLQLVWHUHG�WR�WKH�VWXG\
SDUWLFLSDQWV"��1R
:LOO�EORRG�RU�WLVVXH�VDPSOHV�EH�REWDLQHG�IURP�SDUWLFLSDQWV"��1R
,V�SDLQ�RU�PRUH�WKDQ�PLOG�GLVFRPIRUW�OLNHO\�WR�UHVXOW�IURP�WKH�VWXG\"��1R
&RXOG�WKH�VWXG\�LQGXFH�SV\FKRORJLFDO�VWUHVV�RU�DQ[LHW\�LQ�SDUWLFLSDQWV�RU�WKLUG�SDUWLHV"��1R
:LOO�WKH�VWXG\�LQYROYH�SURORQJHG�RU�UHSHWLWLYH�WHVWLQJ"��1R
:LOO�ILQDQFLDO�LQGXFHPHQWV��RWKHU�WKDQ�UHDVRQDEOH�H[SHQVHV�DQG�FRPSHQVDWLRQ�IRU�WLPH��EH�RIIHUHG�WR
SDUWLFLSDQWV"��1R
$UH�WKHUH�ULVNV�RI�VLJQLILFDQW�GDPDJH�WR�SK\VLFDO�DQG�RU�HFRORJLFDO�HQYLURQPHQWDO�IHDWXUHV"��1R
$UH�WKHUH�ULVNV�RI�VLJQLILFDQW�GDPDJH�WR�IHDWXUHV�RI�KLVWRULFDO�RU�FXOWXUDO�KHULWDJH��H�J��LPSDFWV�RI�VWXG\
WHFKQLTXHV��WDNLQJ�RI�VDPSOHV�"��1R
'RHV�WKH�SURMHFW�LQYROYH�DQLPDOV�LQ�DQ\�ZD\"��1R
&RXOG�WKH�UHVHDUFK�RXWSXWV�SRWHQWLDOO\�EH�KDUPIXO�WR�WKLUG�SDUWLHV"��1R
&RXOG�\RXU�UHVHDUFK�DUWHIDFW�EH�DGDSWHG�DQG�EH�PLVXVHG"��1R
'RHV�\RXU�SURMHFW�RU�SURMHFW�GHOLYHUDEOH�KDYH�DQ\�VHFXULW\�LPSOLFDWLRQV"��1R

,�FRQILUP�WKDW�,�KDYH�FRQVLGHUHG�WKH�LPSOLFDWLRQV�IRU�GDWD�FROOHFWLRQ�DQG�XVH��WDNLQJ�LQWR�FRQVLGHUDWLRQ
OHJDO�UHTXLUHPHQWV��8.�*'35��'DWD�3URWHFWLRQ�$FW������HWF�
,�FRQILUP�WKDW�,�KDYH�FRQVLGHUHG�WKH�LPSDFW�RI�WKLV�ZRUN�DQG�DQG�WDNHQ�DQ\�UHDVRQDEOH�DFWLRQ�WR�PLWLJDWH
SRWHQWLDO�PLVXVH�RI�WKH�SURMHFW�RXWSXWV

,�FRQILUP�WKDW�,�ZLOO�DFW�HWKLFDOO\�DQG�KRQHVWO\�WKURXJKRXW�WKLV�SURMHFW

6XSHUYLVRU�5HYLHZ
$V�VXSHUYLVRU��,�ZLOO�HQVXUH�WKDW�WKLV�ZRUN�ZLOO�EH�FRQGXFWHG�LQ�DQ�HWKLFDO�PDQQHU�LQ�OLQH�ZLWK�WKH�8QLYHUVLW\�(WKLFV�3ROLF\�

6XSHUYLVRU¶V�VLJQDWXUH� 'DWH�

)DFXOW\�(WKLFV�&RPPLWWHH�5HYLHZ
)DFXOW\�(WKLFV�&RPPLWWHH�0HPEHU¶V�VLJQDWXUH� 'DWH�

Appendix C: GANTT Chart

Appendix D: Questionnaire

1.

Mark only one oval.

Yes

No Skip to section 4 (Submit)

Personal Information

2.

Mark only one oval.

18-25

26-35

36-45

46-55

55+

Ca0eine Consumption Questionnaire
The aim of this questionnaire is to gather user insights on how caffeine is consumed and tracked, and what key
features of mobile applications are most important.

This questionnaire should take no more than 10 minutes to complete.

Your participation is completely voluntary and you will be able to withdraw at any time without justification.

All survey responses will be strictly confidential and the data will be stored on the University of Portsmouth secure
network. If you have any issues or concerns with this survey or its procedures, you may contact me at
up904935@myport.ac.uk.

*Required

Do you wish to continue with this questionnaire? *

What is your age bracket? *

3.

Mark only one oval.

Other:

Male

Female

Prefer not to say

4.

Mark only one oval.

Other:

Full-time Employed

Part-time Employed

Student

Unemployed

Caffeine Consumption

5.

Mark only one oval.

Yes

No

6.

Other:

Tick all that apply.

Coffee & Speciality Coffees (Hot, Cold, Iced)

Tea & Speciality Teas (Hot, Cold, Flavoured)

Soft Drinks

Energy Drinks

What is your gender? *

What is your employment status? *

Do you consume caffeinated drinks? *

What type of caffeinated beverages do you usually consume?

7.

Mark only one oval.

0 Drinks

0 1 2 3 4 5 6 7 8 9 10

10 Drinks or more

8.

Other:

Tick all that apply.

To stay up late

To feel more awake

To help focus

To help productivity

To be more alert

To help physical performance

No specific purpose

9.

Mark only one oval.

Yes

No

10.

Mark only one oval.

Yes

No

Roughly how many caffeinated drinks do you consume a day? *

For what purpose would you consume caffeinated drinks?

Are you aware of how much caffeine is in the drinks you consume? *

Do you currently track your caffeine usage? *

11.

Other:

Tick all that apply.

Manually

Mobile Application

Desktop Application

12.

Mark only one oval.

Yes

No

Prefer not to say

13.

Mark only one oval.

Yes

No

14.

Mark only one oval.

Yes

No

Maybe

15.

Mark only one oval.

Yes

No

Maybe

How do you track your caffeine usage?

Would you say you are currently addicted to caffeinated drinks? *

Do you feel it would be hard to cut down or stop drinking caffeinated drinks completely? *

Would having more information about your caffeine intake be likely to change the amount of
caffeine you consume?

Would you find a system that make it easy to track your caffeine usage useful? *

Submit
Thank you for your time to complete this questionnaire. To save the answer please click the Submit button below.

This content is neither created nor endorsed by Google.

 Forms

Appendix E: Questionnaire Results

Do you wish to continue with this questionnaire?
11 responses

Personal Information

What is your age bracket?
11 responses

Ca<eine Consumption Questionnaire
11 responses

Publish analytics

Copy

Yes

No

100%

Copy

18-25

26-35

36-45

46-55

55+
9.1%

27.3%

18.2%

45.5%

What is your gender?
11 responses

What is your employment status?
11 responses

Caffeine Consumption

Do you consume caffeinated drinks?
11 responses

Copy

Male

Female

Prefer not to say
36.4%

63.6%

Copy

Full-time Employed

Part-time Employed

Student

Unemployed18.2%

9.1%

72.7%

Copy

Yes

No

100%

What type of caffeinated beverages do you usually consume?
11 responses

Roughly how many caffeinated drinks do you consume a day?
11 responses

For what purpose would you consume caffeinated drinks?
11 responses

Copy

0 2 4 6 8

Coffee & Speciality Coffees
(Hot, Cold, Iced)

Tea & Speciality Teas (Hot,
Cold, Flavoured)

Soft Drinks

Energy Drinks

8 (72.7%)8 (72.7%)8 (72.7%)

5 (45.5%)5 (45.5%)5 (45.5%)

7 (63.6%)7 (63.6%)7 (63.6%)

2 (18.2%)2 (18.2%)2 (18.2%)

Copy

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
1 (9.
1%) 0 (0%)0 (0%)0 (0%)

2 (
18.
2%)

4 (
36.
4%)

1 (9.
1%) 0 (0%)0 (0%)0 (0%)

1 (9.
1%) 0 (0%)0 (0%)0 (0%)

2 (
18.
2%)

Copy

0 1 2 3 4 5 6

To stay up late

To feel more awake

To help focus

To help productivity

To be more alert

To help physical perform…

No specific purpose

1 (9.1%)1 (9.1%)1 (9.1%)

6 (54.5%)6 (54.5%)6 (54.5%)

1 (9.1%)1 (9.1%)1 (9.1%)

3 (27.3%)3 (27.3%)3 (27.3%)

1 (9.1%)1 (9.1%)1 (9.1%)

0 (0%)0 (0%)0 (0%)

6 (54.5%)6 (54.5%)6 (54.5%)

Are you aware of how much caffeine is in the drinks you consume?
11 responses

Do you currently track your caffeine usage?
11 responses

How do you track your caffeine usage?
2 responses

Copy

Yes

No63.6%

36.4%

Copy

Yes

No

9.1%

90.9%

Copy

0.00 0.25 0.50 0.75 1.00

Manually

Mobile Application

Desktop Application

Nerd friends

0 (0%)0 (0%)0 (0%)

1 (50%)1 (50%)1 (50%)

0 (0%)0 (0%)0 (0%)

1 (50%)1 (50%)1 (50%)

Would you say you are currently addicted to caffeinated drinks?
11 responses

Do you feel it would be hard to cut down or stop drinking caffeinated
drinks completely?
11 responses

Would having more information about your caffeine intake be likely to
change the amount of caffeine you consume?
11 responses

Copy

Yes

No

Prefer not to say

45.5%

54.5%

Copy

Yes

No45.5%

54.5%

Copy

Yes

No

Maybe
36.4%

36.4%

27.3%

Would you find a system that make it easy to track your caffeine usage
useful?
11 responses

Submit

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Copy

Yes

No

Maybe
36.4%

18.2%

45.5%

 Forms

